• 제목/요약/키워드: geospatial analysis

검색결과 681건 처리시간 0.024초

NPV-BASED 3D ARRAY DESIGN SYSTEM OF ROOF-TOP PHOTOVOLTAICS

  • Kim Se-Jong;Cho Dong-Hyun;Park Hyung-Jin;Yoon Hee-Ro;Koo Kyo-Jin
    • International conference on construction engineering and project management
    • /
    • The 5th International Conference on Construction Engineering and Project Management
    • /
    • pp.300-303
    • /
    • 2013
  • On BIPV systems, especially roof-top PV systems, the power generation is easier to be reduced due to the shades of facilities nearby, or roof itself. To secure profitability of roof-top PV systems, the optimal design of solar arrays through the precise shading analysis is an important item of design considerations. In this paper, an optimization system for array design of roof-top PVs is to be developed using three-dimensional Geospatial Information System(GIS). The profitability of income and expense is considered through the shading analysis of entire roofs. By applying the system to project for validation, the adequacy and the improvement of NPV of the system were verified compared to expert's design. The system has significance by reason that PV modules are placed through rules established with expert knowledge and geometric rules were applied to reflect the constructability and maintainability.

  • PDF

Analyzing Preprocessing for Correcting Lighting Effects in Hyperspectral Images (초분광영상의 조명효과 보정 전처리기법 분석)

  • Yeong-Sun Song
    • Journal of the Korean Society of Industry Convergence
    • /
    • 제26권5호
    • /
    • pp.785-792
    • /
    • 2023
  • Because hyperspectral imaging provides detailed spectral information across a broad range of wavelengths, it can be utilized in numerous applications, including environmental monitoring, food quality inspection, medical diagnosis, material identification, art authentication, and crime scene analysis. However, hyperspectral images often contain various types of distortions due to the environmental conditions during image acquisition, which necessitates the proper removal of these distortions through a data preprocessing process. In this study, a preprocessing method was investigated to effectively correct the distortion caused by artificial light sources used in indoor hyperspectral imaging. For this purpose, a halogen-tungsten artificial light source was installed indoors, and hyperspectral images were acquired. The acquired images were then corrected for distortion using a preprocessing that does not require complex auxiliary equipment. After the corrections were made, the results were analyzed. According to the analysis, a statistical transformation technique using mean and standard deviation with reference to a reference signal was found to be the most effective in correcting distortions caused by artificial light sources.

Construction of Vegetation Information Management System Using GIS (GIS를 이용한 식생정보 통합관리시스템 구축 방안)

  • Song, Ji Hye;Kang, In Joon;Hong, Soon Heon;Park, Dong Hyun
    • Journal of Korean Society for Geospatial Information Science
    • /
    • 제22권4호
    • /
    • pp.99-106
    • /
    • 2014
  • After 1960 forest and ecosystem are rapidly destroyed by industrialization and urbanization. Accordingly, studies that produce vegetation map continue for forest and ecosystem management. Since 1986 national natural environment survey is being conducted in Korea. Also, vegetation information is managed properly through forest geospatial information service(FGIS) of the Department of Environment when NGIS project was promoted since 1995. But it provide dominant species information based on text. In particular, some vegetation information dose not provide to end-user. Therefore, we suggest construction method of vegetation information management system based on GIS to solve the problem. Also, we suggest connection method of related system for an accurate analysis, planning and decision-making support.

Analysis of Changes in NDVI Annual Cycle Models Caused by Forest Fire in Yangyang-gun, Gangwon-do Using Time Series of Landsat Images

  • Choi, Yoon Jo;Cho, Han Jin;Hong, Seung Hwan;Lee, Su Jin;Sohn, Hong Gyoo
    • Journal of Korean Society for Geospatial Information Science
    • /
    • 제24권4호
    • /
    • pp.3-11
    • /
    • 2016
  • Sixty four percent of Korean territory consists of forest which is fragile for forest fire. However, it is difficult to detect the disaster-induced damages due to topographic complexity in mountainous areas and harsh weather conditions. For this reason, satellite imaging systems have been widely utilized to detect the damage caused by forest fire. In particular, ground vegetation condition can be estimated from multi-spectral satellite images and change detection technique has been used to detect forest fire damages. However, since Korea has clear four seasons, simple change detection technique has limitation. In this regard, this study applied the NDVI(normalized difference vegetation index) annual cycle modeling technique on time-series of Landsat images from 1991 to 2007 to analyze influence of forest fire of Yangyang-gun, Gangwon-do in 2005 on vegetation condition. The encouraging result was obtained when comparing the areas where forest fire occurs with non-damaged areas. The mean value of NDVI was decreased by 0.07 before and after the forest fire. On the other hand, annual variability of NDVI had been increasing and peak value of NDVI was stationary after the forest fire. It is interpreted that understory vegetation was seriously damaged from the forest fire occurred in 2005.

A Study on Network Strategy for Smart Society by Analysis of Spatial Information Technology Trends (공간정보기술 동향 분석을 통한 스마트사회 네트워크 전략에 관한 연구)

  • Kang, Young-mo;Kang, Chan-woo;Han, Kyeong-seok;Kim, Jong-bae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • 제19권6호
    • /
    • pp.1411-1418
    • /
    • 2015
  • Currently, the previous studies on the concept, configuration, and system regarding spacial information policies show the little progress. However, these studies only propose the basic structure system in terms of a policy theory, seeking and suggesting the basic concept to establish spacial information policies. In the shift of a new paradigm from a PC-based paradigm that began in the mid-2000s to the current smart society based on mobile devises, such as smart phones, this study thus reviewed the strategic direction of the propulsion to establish the desired future strategy for the spatial technology policy with spatial information system that can influence the future national competitiveness of Korea. The results of this study is expected to be used to analyze a variety of issues and technological changes on geospatial intelligence at the global level and to support the establishment of a road-map for policies and research & development on domestic geospatial information.

Investigation and Analysis of Forest Geospatial Information Using Drone (드론을 활용한 산림공간정보 조사 및 분석)

  • Park, Joon-Kyu;Jung, Kap-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • 제19권2호
    • /
    • pp.602-607
    • /
    • 2018
  • The destruction of forests requires continuous management due to the risk of disasters such as landslides and landslides. However, existing forest inspection methods are inefficient as they require a lot of manpower and time. Recently, drones are attracting attention as an effective way to construct and utilize spatial information. The size of the drone-related industrial market is rapidly increasing. In this study, we attempted to increase the efficiency of forest investigation utilizing drones. The study area was photographed through the use of drones, and ortho image and DSM were generated through data processing. Study results found that it was possible to calculate the area and the volume for the forest damaged area effectively by employing drones, and suggested the applicability of drones. In the future, it is expected that the method of analyzing the forested area using drones can save manpower and time compared to existing methods.

Analysis of the Feasibility of GNSS/Geoid Technology in Determining Orthometric Height in Mountain (산악지 표고결정에 있어서 GNSS/Geoid 기술의 활용가능성 분석)

  • Lee, Suk Bae;Lee, Keun Sang;Lee, Min Kun
    • Journal of Korean Society for Geospatial Information Science
    • /
    • 제25권2호
    • /
    • pp.57-65
    • /
    • 2017
  • The purpose of this study is to analyze the feasibility of using Global Navigation Satellite System(GNSS)/Geoid technology in determining orthometric height in mountain. For the study, a test bed was set up in and around Mount Jiri and GNSS surveying were conducted. The orthometric height of 39 benchmarks was determined by applying the EGM2008, KNGeoid13, and KNGeoid14 geoid models and the accuracy was estimated by comparing with the offical Benchmarks orthometric height value issued by National Geographic Information Institute(NGII) and finally, the results were analyzed with the Aerial Photogrammetry Work Regulations. As a result of the study, it was found that the accuracy of the orthometric height determination by GNSS/Geoid technology was ${\pm}7.1cm$ when the KNGeoid14 geoid model was applied. And also, it can be confirmed that it is usable for the less than 1/1000 plotting scales as a vertical reference point for the aerial triangulation in Aerial Photogrammetry.

Development of a Web-based Geospatial Information System for Analyzing and Assessing Geotechnical Information (지반정보 분석 및 평가를 위한 웹기반 지리공간정보 시스템 개발)

  • Lee, Sang-Hoon;Jang, Yong-Gu
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • 제10권4호
    • /
    • pp.142-152
    • /
    • 2007
  • Geotechnical information database, foundation of underground geographic information system in 2nd NGIS plan, had been developing by Ministry of Construction and Transportation since 2000. This database contains not only soil condition, such as depth, type and color of layer, and ground water level, but also engineering properties used for foundation design and construction, for instance, standard penetration test, compression test. But, it is difficult to apply this database for analyzing and designing geotechnical works, because report document is only offered. In this paper, we have developed web-based geospatial information system for the effective uses. First, underground cross-section model is generated by location, layer, and engineering properties of geotechnical information database at the realtime process. Second, earth volume, bearing capacity, and settlement is calculated and potentials of soft ground, liquefaction are evaluated through pre-defined empirical formula. This process is operated by web-based client. We wish to strengthen the application capacity through this system in construction planning and design works.

  • PDF

Evaluation of Geometric Error Sources for Terrestrial Laser Scanner

  • Lee, Ji Sang;Hong, Seung Hwan;Park, Il Suk;Cho, Hyoung Sig;Sohn, Hong Gyoo
    • Journal of Korean Society for Geospatial Information Science
    • /
    • 제24권2호
    • /
    • pp.79-87
    • /
    • 2016
  • As 3D geospatial information is demanded, terrestrial laser scanners which can obtain 3D model of objects have been applied in various fields such as Building Information Modeling (BIM), structural analysis, and disaster management. To acquire precise data, performance evaluation of a terrestrial laser scanner must be conducted. While existing 3D surveying equipment like a total station has a standard method for performance evaluation, a terrestrial laser scanner evaluation technique for users is not established. This paper categorizes and analyzes error sources which generally occur in terrestrial laser scanning. In addition to the prior researches about categorizing error sources of terrestrial Laser scanning, this paper evaluates the error sources by the actual field tests for the smooth in-situ applications.The error factors in terrestrial laser scanning are categorized into interior error caused by mechanical errors in a terrestrial laser scanner and exterior errors affected by scanning geometry and target property. Each error sources were evaluated by simulation and actual experiments. The 3D coordinates of observed target can be distortedby the biases in distance and rotation measurement in scanning system. In particular, the exterior factors caused significant geometric errors in observed point cloud. The noise points can be generated by steep incidence angle, mixed-pixel and crosstalk. In using terrestrial laser scanner, elaborate scanning plan and proper post processing are required to obtain valid and accurate 3D spatial information.

Analysis of Horizontal Positioning for WADGPS using MTSAT (MTSAT를 이용한 WADGPS의 수평위치 해석)

  • Yeu, Hoon;Kim, Jeok-Kyo;Lim, Soo-Bong;Lee, Yong-Wook
    • Journal of Korean Society for Geospatial Information Science
    • /
    • 제14권3호
    • /
    • pp.71-77
    • /
    • 2006
  • MSAS satellite is the geostationary satellite for realizing WADGPS that can get the position of moving object in a wide area receiving the correction signal created from a ground using satellite. In this study, we analyzed two different data. One is using the correction signal transmitted from MTSAT-2 satellite of MSAS and the other is receiving the data of DGPS using BEACON receiver. As we compared both data, we could get the conclusion that the position accuracy of both data is also can get up to the standard or the conventional real-time code DGPS. As a result, we can expect that if we use MTSAT-2 satellite and BEACON receiver together, we can apply them LBS part that require real-time data or the obtaining geospatial information that does not require high accuracy much regardless of topography.

  • PDF