• Title/Summary/Keyword: geophysical investigation

Search Result 176, Processing Time 0.025 seconds

Borehole Image Processing System(BIPS)를 이용한 사면 안정성 해석

  • Yu, Byeong-Ok;Kim, Byeong-Seop
    • Journal of the Korean Geophysical Society
    • /
    • v.5 no.2
    • /
    • pp.111-129
    • /
    • 2002
  • Generally, investigation methods of cut slope are conucted only geological surface survey to gain engineering geological data of cut slopes. These methods have many problems such as limitations of investigation for a special area. So geophysical investigations such as geotomography, seismic and electrical resistivity methods have been used to search for failure surface in potential failure slopes or failed slopes. But investigation method using the borehole camera is recently a used method and it is thought that this method is more reliable method than other investigation methods because of being able to see by the eyes. Therefore, this paper was conducted investigations of borings and BIPS(Borehole Image Processing System) to search for potential sliding surfaces and was applied to obtain information of discontinuity on failed and potential failure slope in highway. As the results of BIPS, we could decide potential sliding surface in the slope, conducted to check slope stability and decided slope stability measures.

  • PDF

Application of Multivariate Statistical Analysis Technique in Landfill Investigation (매립물 특성 조사를 위한 다변량 통계분석 기법의 응용)

  • Kwon, Byung-Doo;Kim, Cha-Soup
    • Journal of the Korean earth science society
    • /
    • v.18 no.6
    • /
    • pp.515-521
    • /
    • 1997
  • To investigate the nature of the waste materials in the Nanjido Landfill, we have conducted multivariate statistical analysis of geophysical data set comprised of magnetic, gravity, LandSat TM thermal band and surface depression measurement data. Because these data sets show different responses to the depth, we have transformed the observed total field magnetic data and gravity data to the residual reduced-to-pole(RTP) magnetic anomalies and the three dimensional density anomalies, respectively, and utilized the informations about the upper shallow part of the landfills only in the following process. For the statistical analysis at the points of depression measurement, the magnetic, density and LandSat data values at these points are determined by interpolation process. Since the multivarite statistical analysis technique utilizes a clustering algorithm for classification of data set and we have measured the dissimilarity between objects by using Euclidean distance, standardization was applied prior to distance calculation in order to eliminate any scaling effects due to different measurement unit of each data set. The hierarchial grouping technique was used to construct the dendrogram. The optimum number of statistical groups(clusters), which are classified on the basis of geophysical and geotechnical characteristics, appeared to be six on the resulting dendrogram. The result of this study suggests that the dimension and nature of the multicomponent waste landfills can be identified by application of the multivarite statistical analysis technique to integrated geophysical data sets.

  • PDF

Numerical Analysis and Exploring of Ground Condition during Groundwater Drawdown Environment in Open-cut Type Excavation (개착식 굴착공사시 지하수위 저하로 인한 지반상태 탐사 및 해석기법 연구)

  • Han, Yushik
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.11
    • /
    • pp.93-105
    • /
    • 2018
  • Precise investigation and interpretation of the ground subsidence risk factors needed to predict and evaluate the settlement problems of the surrounding ground due to the ground excavation. There are various geophysical exploration methods to investigate the ground subsidence risk factors. However, there are factors that influence the characteristics of the underground medium in these geophysical methods, and the actual soil contains complex factors affecting geophysical exploration. Therefore, it is necessary to analyze the effects on the geophysical methods based on the understanding of the geotechnical properties of soil. In this study, a test bed was constructed to consider various complicated factors in the complex ground and the ground behavior was analyzed by numerical analysis. In addition, we analyzed the limitations on investigating the ground subsidence risk factors through ground penetration radar (GPR) survey. As a result, ground subsidence of Open-cut Type Excavation is caused by various factors. Especially, in the case of soft ground condition, it was found that it was greatly influenced by the flow change of groundwater level. At the center frequency of GPR of 250 MHz, the attenuation of the electromagnetic wave is severely attenuated in the clay with high electrical conductivity, making it difficult to penetrate deeply into the ground (4 m below the surface). As the electromagnetic waves pass through the groundwater level below the groundwater, the attenuation of the electromagnetic waves becomes severe.

Mapping Submarine Bathymetry and Geological Structure Using the Lineament Analysis Method

  • Kwon, O-Il;Baek, Yong;Kim, Jinhwan
    • The Journal of Engineering Geology
    • /
    • v.24 no.4
    • /
    • pp.455-461
    • /
    • 2014
  • The Honam-Jeju, Korea-Japan, and Korea-China subsea tunnel construction projects have drawn significant attention since the early 2000s. These subsea tunnels are much deeper than most existing natural shallow sea tunnels linking coastal areas. Thus, the need for developing new technologies for the site selection and construction of deep subsea tunnels has recently emerged, with the launch of a research project titled "Development of Key Subsea Tunnelling Technology" in 2013. A component of this research, an analysis of deep subsea geological structure, is currently underway. A ground investigation, such as a borehole or geophysical investigation, is generally carried out for tunnel design. However, when investigating a potential site for a deep subsea tunnel, borehole drilling requires equipment at the scale of offshore oil drilling. The huge cost of such an undertaking has raised the urgent need for methods to indirectly assess the local geological structure as much as possible to limit the need for repeated borehole investigations. This study introduces an indirect approach for assessing the geological structure of the seafloor through a submarine bathymetry analysis. The ultimate goal here is to develop an automated approach to the analysis of submarine geological structures, which may prove useful in the selection of future deep subsea tunnel sites.

Probabilistic Q-system for rock classification considering shear wave propagation in jointed rock mass

  • Kim, Ji-Won;Chong, Song-Hun;Cho, Gye-Chun
    • Geomechanics and Engineering
    • /
    • v.30 no.5
    • /
    • pp.449-460
    • /
    • 2022
  • Safe underground construction in a rock mass requires adequate ground investigation and effective determination of rock conditions. The estimation of rock mass behavior is difficult, because rock masses are innately anisotropic and heterogeneous at different scales and are affected by various environmental factors. Quantitative rock mass classification systems, such as the Q-system and rock mass rating, are widely used for characterization and engineering design. The measurement of rock classification parameters is subjective and can vary among observers, resulting in questionable accuracy. Geophysical investigation methods, such as seismic surveys, have also been used for ground characterization. Torsional shear wave propagation characteristics in cylindrical rods are equal to that in an infinite media. A probabilistic quantitative relationship between the Q-value and shear wave velocity is thus investigated considering long-wavelength wave propagation in equivalent continuum jointed rock masses. Individual Q-system parameters are correlated with stress-dependent shear wave velocities in jointed rocks using experimental and numerical methods. The relationship between the Q-value and the shear wave velocity is normalized using a defined reference condition. This relationship is further improved using probabilistic analysis to remove unrealistic data and to suggest a range of Q-values for a given wave velocity. The proposed probabilistic Q-value estimation is then compared with field measurements and cross-hole seismic test data to verify its applicability.

Assumption of Failure Surface using Borehole Image Processing System in Failed Rock Slope (Borehole Image Processing System에 의한 붕괴사면의 활동면 추정)

  • Yoo Byung-Ok;Chung Hyung-Sik
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 1999.08a
    • /
    • pp.217-239
    • /
    • 1999
  • Investigation methods of cut slope are conducted generally only geological surface survey to gain engineering geological data of cut slopes. These methods have many problems such as limitation of investigation for a special area. So geophysical investigations such as geotomography, seismic and electrical resistivity methods have been used to search for failure surface in potential failure slopes or failed slopes. But investigation method using the borehole camera is recently a used method and it is thought that this method is more reliable method than other investigation methods because of being able to see by the eyes. Therefore, this paper was conducted investigations of 4 boleholes and BIPS (Borehole Image Processing System) to search for potential sliding surfaces and was applied to obtain information of discontinuity on failed highway slope. As the results of BIPS, we could decide potential sliding surface in the slope and conducted to check slope stability. And decided slope stability measures.

  • PDF

Research and Development of a Geological Remote Sensing Information Extraction System

  • Zhengmin, He
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1275-1277
    • /
    • 2003
  • This paper presents a geological remote sensing information extraction system, the aim of which is to provide practical models and powerful tools to extract geological information from remote sensing images for geological exploration applications. After reviewing and analyzing the existing methods for geological information extraction, we developed more than ten models to enhance and extract geological information, such as alteration information, linear features and special lithological characters. The system is developed based on Erdas Imagine using its programming language. It has been successfully used in the 'reat Investigation of Land and Natural Resources of China' program.

  • PDF

Torsional wave in an inhomogeneous prestressed elastic layer overlying an inhomogeneous elastic half-space under the effect of rigid boundary

  • Kakar, Rajneesh
    • Earthquakes and Structures
    • /
    • v.9 no.4
    • /
    • pp.753-766
    • /
    • 2015
  • An investigation has been carried out for the propagation of torsional surface waves in an inhomogeneous prestressed layer over an inhomogeneous half space when the upper boundary plane is assumed to be rigid. The inhomogeneity in density, initial stress (tensile and compressional) and rigidity are taken as an arbitrary function of depth, where as for the elastic half space, the inhomogeneity in density and rigidity is hyperbolic function of depth. In the absence of heterogeneities of medium, the results obtained are in agreement with the same results obtained by other relevant researchers. Numerically, it is observed that the velocity of torsional wave changes remarkably with the presence of inhomogeneity parameter of the layer. Curves are compared with the corresponding curve of standard classical elastic case. The results may be useful to understand the nature of seismic wave propagation in geophysical applications.

A Study for Minimizing Wetland's Influence by Tunnel Excavation (터널 굴착에 따른 고원습지 영향 최소화 방안 연구)

  • Jue Kwang Sue;Park Kyung Ho;Suh Young Ho;Ko Sung Il
    • Proceedings of the KSR Conference
    • /
    • 2003.10b
    • /
    • pp.460-465
    • /
    • 2003
  • In this paper, we have studied the expected problems when tunnel is excavated under the wetland, and described the measure to maintain the wetland's ecosystem environment. Firstly, we investigated the wetland's ecosystem such as plants and animals, and executed ground investigation including in-situ tests and geophysical survey. And we analyzed the foreign similar cases for tunnel excavation near the wetland. We also evaluated the runoff and infiltration quantity of groundwater and hydraulic behaviour of rock mass and wetland by numerical analysis. Finally, we established the effective measure to minimize the ecosystem's influence by tunnel excavation.

  • PDF

A investigation on the responses of conductive structures of Korean Peninsula using EM modeling

  • Yang, Jun-Mo;Oh, Seok-Hoon;Lee, Duk-Kee;Kwon, Byung-Doo;Youn, Yong-Hoon
    • 한국지구과학회:학술대회논문집
    • /
    • 2004.02a
    • /
    • pp.52-57
    • /
    • 2004
  • Korean Peninsula located between Japan and China where earthquakes frequently occur, have little geophysical observation despite its tectonic importance. This study suggests the inland conductive structures inferred from GDS data measured in Korean Peninsula and try to interpret induction arrows quantitatively with the aid of 2- and 3-D geomagnetic induction modeling. Ogcheon Belt (OCB) and Imjin River Belt (IRB) are regarded as main conductive structures in Korea Peninsula, the induction arrows for the period of 60 minutes show very weak anomaly due to sea effect, which is supported by the results of 3-modeling also. However, for the period of 10 minutes, induction arrows at YIN and ICHN show anomalous patterns considered as the effect of IRB in spite of sea effect. The results of 2-D modeling which simplify geological situations provide overall information on IRB

  • PDF