• Title/Summary/Keyword: geophysical investigation

Search Result 176, Processing Time 0.028 seconds

Investigations of Faults using array CSAMT Method (단층조사를 위한 array CSAMT 적용사례)

  • Lee Sang Kyu;Hwang Se Ho;Lee Dong Young;Lee Jin-Soo;Hwang Hak Soo;Park In Hwa
    • Geophysics and Geophysical Exploration
    • /
    • v.1 no.2
    • /
    • pp.92-100
    • /
    • 1998
  • Array CSAMT surveys were conducted in two areas where it was not easy to identify the presence of faults only with geological survey because of thick overburden. The purpose of these surveys were to locate the faults and to delineate the deep resistivity structures around the faults. The steep dip lineaments having high contrast in resistivity laterally and the low resistive zones having some width in the resistivity sections were interpreted as faults and fracture zones associated with faults, respectively, The good applicability of array CSAMT to the investigation of fault was recognized owing to the agreement between the interpretation results of array CSAMT and the conclusive evidences collected by the following geological survey. The evidences includes the recent exposure of fault and the trajectory of fault evidences of the survey line. A comparison of the applicabilities of array CSAMT method and the resistivity method using dipole-dipole array was presented with the results of both methods along a same traverse line.

  • PDF

Resolving a velocity inversion at the geotechnical scale using the microtremor (passive seismic) survey method

  • Roberts James C.;Asten Michael W.
    • Geophysics and Geophysical Exploration
    • /
    • v.7 no.1
    • /
    • pp.14-18
    • /
    • 2004
  • High levels of ambient noise and safety factors often limit the use of 'active-source' seismic methods for geotechnical investigations in urban environments. As an alternative, shear-wave velocity-depth profiles can be obtained by treating the background microtremor wave field as a stochastic process, rather than adopting the traditional approach of calculating velocity based on ray path geometry from a known source. A recent field test in Melbourne demonstrates the ability of the microtremor method, using only Rayleigh waves, to resolve a velocity inversion resulting from the presence of a hard, 12 m thick basalt flow overlying 25 m of softer alluvial sediments and weathered mudstone. Normally the presence of the weaker underlying sediments would lead to an ambiguous or incorrect interpretation with conventional seismic refraction methods. However, this layer of sediments is resolved by the microtremor method, and its inclusion is required in one-dimensional layered-earth modelling in order to reproduce the Rayleigh-wave coherency spectra computed from observed seismic noise records. Nearby borehole data provided both a guide for interpretation and a confirmation of the usefulness of the passive Rayleigh-wave microtremor method. Sensitivity analyses of resolvable modelling parameters demonstrate that estimates of shear velocities and layer thicknesses are accurate to within approximately $10\%\;to\;20\%$ using the spatial autocorrelation (SPAC) technique. Improved accuracy can be obtained by constraining shear velocities and/or layer thicknesses using independent site knowledge. Although there exists potential for ambiguity due to velocity-thickness equivalence, the microtremor method has significant potential as a site investigation tool in situations where the use of traditional seismic methods is limited.

A Study on the Safety Evaluation Technique of Sluice Culvert (하천제방 배수통문 정밀 안전진단기법 연구)

  • Yoon, Jong-Ryeol;Kim, Jin-Man;Choi, Bong-Hyuck
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.41-46
    • /
    • 2008
  • After choosing twenty sluice culverts located at national rivers by detailed appearance evaluation, hydraulic response test and acoustic televiewer in addition to surface geophysical explorations were carried out to investigate the cavities which exist at the boundary of sluice culvert and ground. Tapping, GPR, 3-D resistivity surveys and acoustic televiewer imagery obtained successful results in limited conditions according to characteristics of the sites. On the other hand, hydraulic response test successfully detected cavity existing at the lower part of sluice culvert and its continuity. However, hydraulic response test can not supply the quantitative informations on the scale and the shape of cavity. Thus it is very important for accurate investigation to make comprehensive interpretation after supplying various surveys proper to site characteristics.

  • PDF

Geophysical Investigation of the Subsurface in the Dok-do Island (물리탐사를 이용한 독도 지반조사)

  • Kim, Chang-Ryol;Park, Sam-Gyu;Bang, Eun-Seok;Kim, Bok-Chul
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.125-130
    • /
    • 2008
  • Electrical resistivity and seismic refraction surveys were conducted to investigate geologic structures and geotechnical characteristics of the subsurface in Dok-do island, along with rock physical properties. The resistivity results in Seo-do island show that the fault adjacent to the fisherman's shelter is a normal fault and extended towards the NW direction. Bedded Rapilli Tuff in the downstream was more severely influenced in depth by weathering and erosion than Trachy Andesite II in the upstream area. The physical properties of the rocks illustrate that Trachyte and Trachy Andesite are hardest, Massive Tuff Breccia is next, and Tuffs are the most soft rocks in Dok-do island.

  • PDF

Experimental and numerical investigation on bearing mechanism and capacity of new concrete plug structures

  • Weng, Yonghong;Huang, Shuling;Xu, Tangjin;Zhang, Yuting
    • Computers and Concrete
    • /
    • v.24 no.5
    • /
    • pp.459-468
    • /
    • 2019
  • The stability and safety of concrete plug structure of diversion tunnel is crucial for the impoundment of upstream reservoir in hydropower projects. The ongoing Wudongde hydropower plant in China plans to adopt straight column plugs and curved column plugs to replace the traditional expanded wedge-shaped plugs. The performance of the proposed new plug structures under high water head is then a critical issue and attracts the attentions of engineers. This paper firstly studied the joint bearing mechanism of plug and surrounding rock mass and found that the quality and mechanical properties of the interfaces among plug concrete, shotcrete, and surrounding rock mass play a key role in the performance of plug structures. By performing geophysical and mechanical experiments, the contact state and the mechanical parameters of the interfaces were analyzed in detail and provide numerical analysis with rational input parameters. The safety evaluation is carried out through numerical calculation of plug stability under both construction and operation period. The results indicate that the allowable water head acting on columnar plugs is 3.1 to 7.4 times of the designed water head. So the stability of the new plug structure meets the design code requirement. Based on above findings, it is concluded that for the studied project, it is feasible to adopt columnar plugs to replace the traditional expanded wedge-shaped plugs. It is hoped that this study can provide reference for other projects with similar engineering background and problems.

Safety Analysis of Reservoir Dikes in South Korea through the Interpretation of the Electrical Resistivity Data Considering Three-dimensional Structure (3차원 구조를 고려한 전기비저항 탐사자료 해석을 통한 국내 저수지 제체 안전성 분석)

  • Song, Sung-Ho;Yong, Hwan-Ho;Lee, Gyu-Sang;Cho, In-Ky
    • Geophysics and Geophysical Exploration
    • /
    • v.22 no.3
    • /
    • pp.160-167
    • /
    • 2019
  • Resistivity inversion result may be distorted if the seepage line fluctuation within central core with the change of reservoir water level as well as the conductivity of the reservoir water is not taken into consideration because the reservoir dike is composed of three-dimensional (3D) resistivity structure. Consequently, to accurately analyze the resistivity changes inside the reservoir dike according to the change of reservoir water level, 3D electrical resistivity modeling for the 2D survey line considering topography and physical properties of dam components was carried out. In addition, 2D inversion was performed with the simulated 2D resistivity data for a given 3D model in order to compare it with the inversion result of real field data. For 283 reservoirs in Korea, 2D inversion results for the simulated 2D data and field 2D resistivity data were compared. Finally, the reservoirs with an inversion ratio of 50% or less were selected as reservoirs that require further precise investigation.

The Effect of Remedial Works to Control the Leakage Problem in Earth Fill Dam by Compaction Grouting (콤팩션 그라우팅에 의한 흙댐의 누수복원 공사효과 분석)

  • Chun, Byung-Sik;Lee, Yong-Jae;Chung, Ha-Ik
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.11
    • /
    • pp.13-23
    • /
    • 2006
  • The sinkhole and leakage in dam core were detected at one of earth fill dams in Korea. The damage areas in the core of the dam were repaired by compaction grouting method. This study is to evaluate compaction grouting activity by in-situ and laboratory experiments before, during and after the remedial work. The intensive site investigation and geophysical survey were conducted during and after the compaction grouting work. The compaction grouting work was carried out for the damaged dam core between June 16 and August 24, 2000. The leakage reduction generally occurred in the core of the dam after the remedial work. The use of compaction grouting was considered the proper countermeasures for repairing the damaged dam. It shows that the loose or voided zones have been properly filled and the leakage has been reduced by about 96% of that before the treatment of the remedial work performed at dam core by compaction grouting.

Characteristics of Ground-Penetrating Radar (GPR) Radargrams with Variable Antenna Orientation

  • Yoon Hyung Lee;Seung-Sep Kim
    • Economic and Environmental Geology
    • /
    • v.57 no.1
    • /
    • pp.17-23
    • /
    • 2024
  • Ground penetrating radar (GPR) survey is a geophysical method that utilizes electromagnetic waves reflecting from a boundary where the electromagnetic property changes. As the frequency of the antenna is about 25 MHz ~ 1 GHz, it is effective to acquire high resolution images of underground pipe, artificial structure, underground cavity, and underground structure. In this study, we analyzed the change of signals reflected from the same underground objects according to the arrangement of transceiver antennas used in ground penetrating radar survey. The antenna used in the experiment was 200 MHz, and the survey was performed in the vertical direction across the sewer and the parallel direction along the sewer to the sewer buried under the road, respectively. A total of five antenna array methods were applied to the survey. The most used arrangement is when the transmitting and receiving antennas are all perpendicular to the survey line (PR-BD). The PR-BD arrangement is effective when the object underground is a horizontal reflector with an angle of less than 30°, such as the sewer under investigation. In this case study, it was confirmed that the transmitter and receiver antennas perpendicular to the survey line (PR-BD) are the most effective way to show the underground structure. In addition, in the case where the transmitting and receiving antennas are orthogonal to each other (XPOL), no specific reflected wave was observed in both experiments measured across or parallel to the sewer. Therefore, in the case of detecting undiscovered objects in the underground, the PR-BD array method in which the transmitting and receiving antennas are aligned in the direction perpendicular to the survey line taken as a reference and the XPOL method in which the transmitting and receiving antennas are orthogonal to each other are all used, it can be effective to apply both of the above arrangements after setting the direction to 45° and 135°.

Three dimensional GPR survey for the exploration of old remains at Buyeo area (부여지역 유적지 발굴을 위한 3차원 GPR 탐사)

  • Kim Jung-Bo;Son Jeong-Sul;Yi Myeong-Jong;Lim Seong-Keun;Cho Seong-Jun;Jeong Ji-Min;Park Sam-Gyu
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.49-69
    • /
    • 2004
  • One of the important roles of geophysical exploration in archeological survey may be to provide the subsurface information for effective and systematic excavations of historical remains. Ground Penetrating Radar (GPA) can give us images of shallow subsurface structure with high resolution and is regarded as a useful and important technology in archeological exploration. Since the buried cultural relics are the three-dimensional (3-D) objects in nature, the 3-D or areal survey is more desirable in archeological exploration. 3-D GPR survey based on the very dense data in principle, however, might need much higher cost and longer time of exploration than the other geophysical methods, thus it could have not been applied to the wide area exploration as one of routine procedures. Therefore, it is important to develop an effective way of 3-D GPR survey. In this study, we applied 3-D GPR method to investigate the possible historical remains of Baekje Kingdom at Gatap-Ri, Buyeo city, prior to the excavation. The principal purpose of the investigation was to provide the subsurface images of high resolution for the excavation of the surveyed area. Besides this, another purpose was to investigate the applicability and effectiveness of the continuous data acquisition system which was newly devised for the archeological investigation. The system consists of two sets of GPR antennas and the precise measurement device tracking the path of GPR antenna movement automatically and continuously Besides this hardware system, we adopted a concept of data acquisition that the data were acquired arbitrary not along the pre-established profile lines, because establishing the many profile lines itself would make the field work much longer, which results in the higher cost of field work. Owing to the newly devised system, we could acquire 3-D GPR data of an wide area over about $17,000 m^2$ as a result of the just two-days field work. Although the 3-D GPR data were gathered randomly not along the pre-established profile lines, we could have the 3-D images with high resolution showing many distinctive anomalies which could be interpreted as old agricultural lands, waterways, and artificial structures or remains. This case history led us to the conclusion that 3-D GPR method can be used easily not only to examine a small anomalous area but also to investigate the wider region of archeological interests. We expect that the 3-D GPR method will be applied as a one of standard exploration procedures to the exploration of historical remains in Korea in the near future.

  • PDF

Three-dimensional anisotropic inversion of resistivity tomography data in an abandoned mine area (폐광지역에서의 3차원 이방성 전기비저항 토모그래피 영상화)

  • Yi, Myeong-Jong;Kim, Jung-Ho;Son, Jeong-Sul
    • Geophysics and Geophysical Exploration
    • /
    • v.14 no.1
    • /
    • pp.7-17
    • /
    • 2011
  • We have developed an inversion code for three-dimensional (3D) resistivity tomography including the anisotropy effect. The algorithm is based on the finite element approximations for the forward modelling and Active Constraint Balancing method is adopted to enhance the resolving power of the smoothness constraint least-squares inversion. Using numerical experiments, we have shown that anisotropic inversion is viable to get an accurate image of the subsurface when the subsurface shows strong electrical anisotropy. Moreover, anisotropy can be used as additional information in the interpretation of subsurface. This algorithm was also applied to the field dataset acquired in the abandoned old mine area, where a high-rise apartment block has been built up over a mining tunnel. The main purpose of the investigation was to evaluate the safety analysis of the building due to old mining activities. Strong electrical anisotropy has been observed and it was proven to be caused by geological setting of the site. To handle the anisotropy problem, field data were inverted by a 3D anisotropic tomography algorithm and we could obtain 3D subsurface images, which matches well with geology mapping observations. The inversion results have been used to provide the subsurface model for the safety analysis in rock engineering and we could assure the residents that the apartment has no problem in its safety after the completion of investigation works.