DOI QR코드

DOI QR Code

Three-dimensional anisotropic inversion of resistivity tomography data in an abandoned mine area

폐광지역에서의 3차원 이방성 전기비저항 토모그래피 영상화

  • Yi, Myeong-Jong (Exploration Geophysics and Mining Engineering Department, Korea Institute of Geoscience and Mineral Resources) ;
  • Kim, Jung-Ho (Exploration Geophysics and Mining Engineering Department, Korea Institute of Geoscience and Mineral Resources) ;
  • Son, Jeong-Sul (Exploration Geophysics and Mining Engineering Department, Korea Institute of Geoscience and Mineral Resources)
  • Received : 2010.11.01
  • Accepted : 2010.11.24
  • Published : 2011.02.28

Abstract

We have developed an inversion code for three-dimensional (3D) resistivity tomography including the anisotropy effect. The algorithm is based on the finite element approximations for the forward modelling and Active Constraint Balancing method is adopted to enhance the resolving power of the smoothness constraint least-squares inversion. Using numerical experiments, we have shown that anisotropic inversion is viable to get an accurate image of the subsurface when the subsurface shows strong electrical anisotropy. Moreover, anisotropy can be used as additional information in the interpretation of subsurface. This algorithm was also applied to the field dataset acquired in the abandoned old mine area, where a high-rise apartment block has been built up over a mining tunnel. The main purpose of the investigation was to evaluate the safety analysis of the building due to old mining activities. Strong electrical anisotropy has been observed and it was proven to be caused by geological setting of the site. To handle the anisotropy problem, field data were inverted by a 3D anisotropic tomography algorithm and we could obtain 3D subsurface images, which matches well with geology mapping observations. The inversion results have been used to provide the subsurface model for the safety analysis in rock engineering and we could assure the residents that the apartment has no problem in its safety after the completion of investigation works.

본 연구에서는 이방성을 포함하는 3차원 전기비저항 토모그래피 프로그램을 개발하였다. 이론 모델링에는 유한요소법을 이용하였고 역산에 ACB 법을 채용하여 평활화 제한 최소자승 역산의 분해능 향상을 기하였다. 수치모형 실험을 통하여 지하구조가 강한 전기적 이방성을 보이는 경우 이방성을 고려한 역산이 필수적임과 이방성이 지하구조의 해석에서 추가적인 정보로 활용 가능함을 보였다. 또한 과거 채굴 터널 상부에 고층 아파트가 건설된 폐광현장에서 획득한 3차원 토모그래피 탐사자료에 개발된 알고리듬을 적용하여 과거 채광활동과 관련된 건축물의 안전성을 평가하고자 하였다. 탐사자료에서 강한 전기적 이방성이 관찰되었고 이는 조사지역의 지질적 특성에 기인하는 것으로 확인되었다. 조사지역의 이방성을 고려하기 위하여 3차원 이방성 전기비저항 토모그래피 영상화를 수행하였으며 이로부터 지질구조에 부합하는 지하 3차원 전기비저항 영상을 획득할 수 있었다. 획득한 전기비저항 영상은 암반공학에서의 지반안정성 분석을 위한 지질구조 모형을 도출하는데 사용되었으며, 이로부터 조사대상인 아파트가 안전성에 문제가 없음을 밝힐 수 있었다.

Keywords

References

  1. Abubakar, A., and Van den Berg, P. M., 2000, Non-linear three-dimensional inversion of cross-well electrical measurements: Geophysical Prospecting, 48, 109-134. doi:10.1046/j.1365-2478.2000.00170.x
  2. Daily, W., and Owen, E., 1991, Cross-borehole resistivity tomography: Geophysics, 56, 1228-1235. doi:10.1190/1.1443142
  3. Daily, W., and Ramirez, A. L., 1995, Electrical resistance tomography during in-situ trichloroethylene remediation at the Savannah River Site: Journal of Applied Geophysics, 33, 239-249. https://doi.org/10.1016/0926-9851(95)90044-6
  4. Daily, W., and Ramirez, A. L., 2000, Electrical imaging of engineered hydraulic barriers: Geophysics, 65, 83-94. doi:10.1190/1.1444728
  5. Dey, A., and Morrison, H. F., 1979, Resistivity modeling for arbitrarily shaped three dimensional structures: Geophysics, 44, 753-780. doi:10.1190/1.1440975
  6. Herwanger, J. V., Pain, C. C., Binley, A., de Oliveira, C. R. E., and Worthington, M. H., 2004, Anisotropic resistivity tomography: Geophysical Journal International, 158, 409-425. doi:10.1111/j.1365- 246X.2004.02314.x
  7. Kim, J.-H., Yi, M.-J., and Cho, S.-J., 2004, Application of high-resolution geoelectric imaging techniques to geotechnical engineering in Korea, in Y. Ohnishi and K. Aoki, eds, Proceedings of the ISRM International Symposium, 3rd ARMS, Vol. 1, Kyoto, Japan, 191-196.
  8. Kim, J.-H., Cho, S.-J., Yi, M.-J., and Sato, M., 2006a, Application of anisotropy borehole radar tomography in Korea: Near Surface Geophysics, 4, 13-18.
  9. Kim, J.-H., Yi, M.-J., Cho, S.-J., Son, J.-S., and Song, W.-K., 2006b, Anisotropic crosshole resistivity tomography for ground safety analysis of a high-storied building over an abandoned mine: Journal of Environmental & Engineering Geophysics, 11, 225-235. doi:10.2113/ JEEG11.4.225
  10. LaBrecque, D. J., and Casale, D., 2002, Experience with anisotropic inversion for electrical resistivity tomography: Symposium on the Application of Geophysics to Engineering and Environmental Problems (SAGEEP 2002), 11ELE6.
  11. LaBrecque, D. J., Morelli, G., Daily, W., Ramirez, A., and Lundegard, P., 1999, Occam's inversion of 3D electrical resistivity tomography, in M. Oristaglio and B. Spies, eds., Three-dimensional Electromagnetics, Soc. Expl. Geophys., Geophys. Dev. Series 7, 575-590.
  12. LaBrecque, D. J., Heath, G., Sharpe, R., and Versteeg, R., 2004, Autonomous monitoring of fluid movement using 3D electrical resistivity tomography: Journal of Environmental & Engineering Geophysics, 9, 167-176. doi:10.4133/JEEG9.3.167
  13. Lesur, V., Cuer, M., and Straub, A., 1999, 2D and 3D interpretation of electrical tomography measurements, Part 2: The inverse problem: Geophysics, 64, 396-402. doi:10.1190/1.1444544
  14. Maillol, J. M., Seguin, M.-K., Gupta, O. P., Akhauri, H. M., and Sen, N., 1999, Electrical resistivity tomography survey for delineating uncharted mine galleries in West Bengol, India: Geophysical Prospecting, 47, 103–116. doi:10.1046/j.1365-2478.1999.00126.x
  15. Negi, J. G., and Saraf, P. D., 1989, Anisotropy in Geoelectromagnetism: Elsevier Scientific Publishers.
  16. Sasaki, Y., 1992, Resolution of resistivity tomography inferred from numerical simulation: Geophysical Prospecting, 40, 453–463. doi:10.1111/j.1365-2478.1992.tb00536.x
  17. Shima, H., 1992, 2D and 3D resistivity image reconstruction using crosshole data: Geophysics, 57, 1270-1281. doi:10.1190/1.1443195
  18. Slater, L., Binley, A. M., Daily, W., and Johnson, R., 2000, Crosshole electrical imaging of a controlled saline tracer injection: Journal of Applied Geophysics, 44, 85-102. doi:10.1016/S0926-9851(00)00002-1
  19. Yi, M.-J., Kim, J.-H., Song, Y., Cho, S.-J., Chung, S.-H., and Suh, J.-H., 2001, Three-dimensional imaging of subsurface structures using resistivity data: Geophysical Prospecting, 49, 483-497. doi:10.1046/j.1365-2478. 2001.00269.x
  20. Yi, M.-J., Kim, J.-H., and Chung, S.-H., 2003, Enhancing the resolving power of least-squares inversion with Active Constraint Balancing: Geophysics, 68, 931-941. doi:10.1190/1.1581045
  21. Yi, M.-J., Kim, J.-H., and Song, Y., 2006, Application of 3D resistivity tomography to delineate subsurface structures: Exploration Geophysics, 37, 268-277. doi:10.1071/EG06268