• 제목/요약/키워드: geometrical shapes

검색결과 168건 처리시간 0.024초

크리에이티브 패션 디자인의 전개 방법에 관한 연구 (A Study on the Expansion Methodology of Creative Fashion Design)

  • 공미선;채금석
    • 복식
    • /
    • 제55권2호
    • /
    • pp.45-57
    • /
    • 2005
  • The creative fashion design is the technique which ran be obtained through the structural analysis of the relationship between principle, element-combination and idea-expression. In the research, as the results of theoretical survey of design structure and idea-expression, the structural and subjective designs are classified and defined: a. the structural design is analyzed with the existing examples based on the combinational Idea-expression of the O.C.L method, and b. the subjective design is also analyzed connecting the real examples to Cordon method, Synetic method, Association method, and expansive idea-expression-method obtained by the Experiences of Geometrical Combinations. The research can be summarized as follows: 1. The creative fashion design which emphasizes the geometrical structure utilizes the modification method whirh combines the shapes and constructs extraordinary structural beauty coming from the complex structural principle, that is, emphasis and balance. 2. The creative fashion design which emphasizes specific subjects utilizes the modification method which mimics representative and plastic resemblances and constructs symbolic structural beauty coming from the simple structural principle, that is, material elements.

화상처리기법을 이용한 비데오 헤드의 형상 검사 (VTR Head Inspection by using Image Processing Technique)

  • 유영기;노병옥;오춘석
    • 한국정보처리학회논문지
    • /
    • 제5권4호
    • /
    • pp.1074-1082
    • /
    • 1998
  • 현재 시판중인 비데오는 두개 또는 그 이상의 헤드가 호전하는 드럼에 장착되어 비데오 신호를 기록 또는 재생하고 있다. 대량 생산시 비데오의 일정한 품질관리를 얻기위해서는 드럼에 장착된 헤드의 기하학적 그리고 전기적 특성이 같은 것이어야 한다. 본 연구에서는 헤드의 기하학적 형상을 대별하는 네가지 검사항목 H0, H1, Tw, CW을 자동으로 측정하는 화상기법을 이용한 영상처리알고리즘에 관하여 기술하였다. 1000개의 헤드에 대하여 실험한 결과 현장에 적용할 수 있는 성능을 보였다.

  • PDF

가변롤성형 공정을 이용한 단면이 가변하는 프로파일의 형상변수 분석에 관한 연구 (Investigation of Shape Parameters for a Profile with Variable-cross Sections Produced by Flexible Roll Forming)

  • 박종철;차명환;김돈건;남재복;양동열
    • 소성∙가공
    • /
    • 제23권6호
    • /
    • pp.369-375
    • /
    • 2014
  • Flexible roll forming allows profiles to have variable cross-sections. However, the profile may have some shape errors, such as, warping which is a major defect. The shape error is induced by geometrical deviations in both the concave zone and the convex zone. In the current study, flexible roll forming was modeled with FE simulations to analyze the shape error and the longitudinal strain distribution along the flange section over the profile. A distribution of analytically calculated longitudinal strains was used to develop relationships between the shape error and the longitudinal strain distribution as a function of the defined shape parameters for the profile. The FE simulations showed that the shape error is primarily affected by the deviations between the distribution of analytically calculated longitudinal strain and the longitudinal strain distribution of the profile. The results show that the shape error can be controlled by designing the shape parameters to control the geometrical deviations at the flange section in the transition zones.

VOB를 이용한 선형 설계 실용화에 대한 연구 (Practical Hull Form Design using VOB)

  • 김현철
    • 한국해양공학회지
    • /
    • 제30권4호
    • /
    • pp.235-242
    • /
    • 2016
  • In general, ship hull form design is carried out in two stages. In the first stage, the longitudinal variation of the sectional area curves is adapted from a similar mother ship to determine the volume distribution in ships. At this design stage, the initial design conditions of displacement, longitudinal center of buoyancy, etc. are satisfied and the global hydrodynamic properties of the structure are optimized. The second stage includes the local designing of the sectional forms. Sectional forms are related to the local pressure resistance in the fore- and aft-body shapes, cargo boundaries, interaction between the hull and propeller, etc. These relationships indicate that the hull sections need to be optimized in order to minimize the local resistance. The volumetric balanced (VOB) variation of ship hull forms has been suggested by Kim (2013) as a generalized, systematic variation method for determining the sectional area curves in hull form design. This method is characterized by form parameters and is based on an optimization technique. This paper emphasizes on an extensional function of the VOB considering a geometrical wave profile. We select a container ship and an LNG carrier to demonstrate the applicability of the proposed technique. Through analysis, we confirm that the VOB method, considering the geometrical wave profile, can be used as an efficient tool in the hull form design for ships.

일방향 지오데식을 활용한 곡면 형상의 패널링 - 복합 곡면을 중심으로 - (Paneling of Curved NURBS Surface through Marching Geodesic - Application on Compound Surface -)

  • 홍지학;성우제
    • 한국BIM학회 논문집
    • /
    • 제11권4호
    • /
    • pp.42-52
    • /
    • 2021
  • Paneling building facades is one of the essential procedures in building construction. Traditionally, it has been an easy task of simply projecting paneling patterns drawn in drawing boards onto 3d building facades. However, as many organic or curved building shapes are designed and constructed in modern architectural practices, the traditional one-to-one projection is becoming obsolete for the building types of the kind. That is primarily because of the geometrical discrepancies between 2d drawing boards and 3d curved building surfaces. In addition, curved compound surfaces are often utilized to accommodate the complicated spatial programs, building codes, and zoning regulations or to achieve harmonious geometrical relationships with neighboring buildings in highly developed urban contexts. The use of the compound surface apparently makes the traditional paneling pattern projection more challenging. Various mapping technics have been introduced to deal with the inabilities of the projection methods for curved facades. The mapping methods translate geometries on a 2d surface into a 3d building façade at the same topological locations rather than relying on Euclidean or Affine projection. However, due to the intrinsic differences of the planar 2d and curved 3d surfaces, the mapping often comes with noticeable distortions of the paneling patterns. Thus, this paper proposes a practical method of drawing paneling patterns directly on a curved compound surface utilizing Geodesic, which is faithful to any curved surface, to minimize unnecessary distortions.

Comparative study between inelastic compressive buckling analysis and Eurocode 3 for rectangular steel columns under elevated temperatures

  • Seo, Jihye;Won, Deokhee;Kim, Seungjun
    • Steel and Composite Structures
    • /
    • 제43권3호
    • /
    • pp.341-351
    • /
    • 2022
  • This paper presents an inelastic buckling behavior analysis of rectangular hollow steel tubes with geometrical imperfections under elevated temperatures. The main variables are the temperature loads, slenderness ratios, and exposure conditions at high temperatures. The material and structural properties of steels at different temperatures are based on Eurocode (EN 1993-1-2, 2005). In the elastic buckling analysis, the buckling strength decreases linearly with the exposure conditions, whereas the inelastic buckling analysis shows that the buckling strength decreases in clusters based on the exposure conditions of strong and weak axes. The buckling shape of the rectangular steel column in the elastic buckling mode, which depicts geometrical imperfection, shows a shift in the position at which bending buckling occurs when the lower section of the member is exposed to high temperatures. Furthermore, lateral torsional buckling occurs owing to cross-section deformation when the strong axial plane of the model is exposed to high temperatures. The elastic buckling analysis indicates a conservative value when the model is exposed to a relatively low temperature, whereas the inelastic buckling analysis indicates a conservative value at a certain temperature or higher. The comparative results between the inelastic buckling analysis and Eurocode 3 show that a range exists in which the buckling strength in the design equation result is overestimated at elevated temperatures, and the shapes of the buckling curves are different.

조형예술을 응용한 의상디자인 발상에 관한 연구 -20세기 패션디자인에 나타난 몬드리안의 기하추상회화 작품을 중심으로- (A Study on Fashion Design Applied with the Plastic Arts -Focused on Mondrian's Geometrical Abstract Painting Shown in the Twenty Century's Fashion Design-)

  • 조진숙
    • 복식문화연구
    • /
    • 제12권4호
    • /
    • pp.663-675
    • /
    • 2004
  • The plastic arts is used when designers draw inspirations to create fashion design. The author referred to fashion magazines for designing ideas of Mondrian's geometrical abstract painting in practical applications used by designers in Paris, Italy, London and New York during the 10-year period(1991-2000). The collections of data were analyzed as following: ◇ Fashion Designing Idea 1. Matching Idea The art is reproduced in the design as how it is with no transformation. First, the painting's complete figure is reproduced on the entire or parts of clothing. Second, the painting's partial figure is reproduced on the entire or parts of clothing. 2. Contrasting Ideas The composition elements in Mondrian's geometrical abstract painting, for example, structures of shapes, vertical and horizontal lines and different colors are applied in the design. First, one particular shape in painting is transformed into different shape of square, circle or triangle and reproduced in designing. Second, one particular shape in painting is disassembled and then reshaped into different form in reproduction. Third, additional lines are put in to create different look from the original painting. Forth, existing lines are extended over the boundary to create different look from the original painting. Fifth, achromatic colors: black and white, and three basic colors: red, blue and yellow in the original painting are modified into different shades or color scheme is increased in broad range.

  • PDF

분사홀 형상과 분사각 변화가 터빈블레이드 선단 막냉각 특성에 미치는 영향 (Effects of Various Injection Hole Shapes and Injection Angles on the Characteristics of Turbine Blade Leading Edge Film Cooling)

  • 김윤제;권동구
    • 대한기계학회논문집B
    • /
    • 제25권7호
    • /
    • pp.933-943
    • /
    • 2001
  • Using a semi-circled blunt body model, the geometrical effects of injection hole on the turbine blade leading edge film cooling are investigated. The film cooling characteristics of two shaped holes (laterally- and streamwise-diffused holes) and three cylindrical holes with different lateral injection angles, 30°, 45°, 60°, respectively, are compared with those of cylindrical hole with no lateral injection angle experimentally and numerically. Kidney vortices, which decrease the adiabatic film cooling effectiveness, appear on downstream of the cylindrical hole with no lateral injection angle. At downstream of the two shaped holes have better film cooling characteristics than the cylindrical one. Instead of kidney vortices, single vortex appears on downstream of injection holes with lateral injection angle. The adiabatic film cooling effectiveness is symmetrically distributed along the lateral direction downstream of the cylindrical hole with no lateral injection angle. But, at downstream of the cylindrical holes with lateral injection angle, the distribution of adiabatic film cooling effectiveness in the lateral direction shows asymmetric nature and high adiabatic film cooling effectiveness regions are more widely distributed than those of the cylindrical hole with no lateral injection angle. As the blowing ratio increases, also, the effects of hole shapes and injection angles increase.

Exact vibration of Timoshenko beam combined with multiple mass spring sub-systems

  • El-Sayed, Tamer A.;Farghaly, Said H.
    • Structural Engineering and Mechanics
    • /
    • 제57권6호
    • /
    • pp.989-1014
    • /
    • 2016
  • This paper deals with the analysis of the natural frequencies, mode shapes of an axially loaded beam system carrying ends consisting of non-concentrated tip masses and three spring-two mass sub-systems. The influence of system design and sub-system parameters on the combined system characteristics is the major part of this investigation. The effect of material properties, rotary inertia and shear deformation of the beam system is included. The end masses are elastically supported against rotation and translation at an offset point from the point of attachment. Sub-systems are attached to center of gravity eccentric points out of the beam span. The boundary conditions of the ordinary differential equation governing the lateral deflections and slope due to bending of the beam system including developed shear force frequency dependent terms, due to the sub.system suspension, have been formulated. Exact formulae for the modal frequencies and the modal shapes have been derived. Based on these formulae, detailed parametric studies are carried out. The geometrical and mechanical parameters of the system under study have been presented in non-dimensional analysis. The applied mathematical model is presented to cover wide range of mechanical, naval and structural engineering applications.

복합적층 원뿔형 쉘의 자유진동에 관한 기하학적 형상의 영향 (Effects of Geometrical Shape on the Free Vibration of Laminated Composite Conical Shells)

  • 손병직;지효선;장석윤
    • 한국강구조학회 논문집
    • /
    • 제14권4호
    • /
    • pp.519-527
    • /
    • 2002
  • 쉘 구조물은 지붕 구조물, 굴뚝 구조물, 압력구조물, 선박구조물, 항공구조물 등에 널리 사용되는 구조물이다. 본 논문은 전단변형 효과를 고려한 비등방성 복합성층 원뿔형 쉘의 자유진동에 관하여 연구하였다. 복합재료는 2개 또는 이상의 재료들로 구성되어 구조적인 효율성을 증진시키도록 구성된 재료이다. 이러한 복합재료로 구성된 구조물의 거동은 매우 복잡하기 때문에 해석해를 구하기가 거의 불가능하다. 따라서 본 연구에서는 이러한 복합재료로 구성된 원뿔형 쉘의 자유진동을 해결하는데 유한차분법을 사용하였다. 중심각, 정점각 및 다른 기하학적 파라미터의 진동에 대한 효과를 연구하였고, 진동모드 형상을 예시함으로서 진동모드에 관한 물리적 및 공학적인 이해를 증진시키고자 하였다.