• Title/Summary/Keyword: geometrical configuration

Search Result 169, Processing Time 0.029 seconds

Temperature variation in steel beams subjected to thermal loads

  • Abid, Sallal R.
    • Steel and Composite Structures
    • /
    • v.34 no.6
    • /
    • pp.819-835
    • /
    • 2020
  • The effects of atmospheric thermal loads on the response of structural elements that are exposed to open environments have been recognized by research works and design specifications. The main source of atmospheric heat is solar radiation, which dominates the variation of the temperature of air, earth surface and all exposed objects. The temperature distribution along the depth of steel members may differ with the geometry configuration, which means that the different-configuration steel members may suffer different thermally induced strains and stresses. In this research, an experimental steel beam was instrumented with many thermocouples in addition to other sensors. Surface temperatures, air temperature, solar radiation and wind speed measurements were recorded continuously for 21 summer days. Based on a finite element thermal analysis, which was verified using the experimental records, several parametric studies were directed to investigate the effect of the geometrical parameters of AISC standard steel sections on their thermal response. The results showed that the overall size of the beam, its depth and the thickness of its elements are of significant effect on vertical temperature distributions and temperature differences.

Electrical Characterization of Electronic Materials Using FIB-assisted Nanomanipulators

  • Roh, Jae-Hong;You, Yil-Hwan;Ahn, Jae-Pyeong;Hwang, Jinha
    • Applied Microscopy
    • /
    • v.42 no.4
    • /
    • pp.223-227
    • /
    • 2012
  • Focused Ion Beam (FIB) systems have incorporated versatile nanomanipulators with inherent sophisticated machining capability to characterize the electrical properties of highly miniature components of electronic devices. Carbon fibers were chosen as a model system to test the applicability of nanomanipulators to microscale electronic materials, with special emphasis on the direct current current-voltage characterizations in terms of electrode configuration. The presence of contact resistance affects the electrical characterization. This resistance originates from either i) the so-called "spreading resistance" due to the geometrical constriction near the electrode - material interface or ii) resistive surface layers. An appropriate electrode strategy is proposed herein for the use of FIB-based manipulators.

A Study on the Theory and Application for the Morphological Aspects of Hybrid Spatial Structures (대공간구조물의 형태결정에 관한 이론 및 응용에 관한 연구)

  • 이경수;이상주;유용주;한상을
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.04a
    • /
    • pp.272-279
    • /
    • 1998
  • The purpose of this study is to show how to gain the morphology of the Hybrid Spatial Structures and to get the geometrical data such as node coordinates, member relationships and graphic images. To form spatial structures, we have developed morphological aspects of general spatial structures, programming process and techniques. Structural design has many processes. Especially, it is very important to consider the determination of structural configuration. Regular Hybrid Spatial Structures have complex configuration, so we need to make use of automated computer process to determine structural shape in Hybrid Spatial Structures. We have applied morphological aspects to double layer plate, single layer dome, double layer dome and tensegrity structure.

  • PDF

A Study on Nonlinear Analysis of Mooring Lines (계류삭의 비선형운동특성해석에 관한 연구)

  • Sang-Moo,Lee;Yong-Chul,Kim;Young-Whan,Kim;Seok-Won,Hong;Hun-Chol,Kim
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.23 no.1
    • /
    • pp.3-12
    • /
    • 1986
  • This paper investigates the static configurations and the dynamic behaviors of a single point mooring line. To obtain the static configuration and static tension distribution along the mooring line, including the effect of fluid nonlinear drag and the elasticity of the line, the Runge-Kutta fourth order numerical method was used. The relationship between the horizontal excursion and the horizontal restoring force component of the mooring line, which is very important to a mooring line design, and the effect of a subsurface buoy on the static configuration are presented. In nonlinear dynamic analysis including nonlinear fluid drag acting on the line and geometrical nonlinearity for large deflections, finite element method using updated Lagrangian was used to obtain the solution. In the case of upper end harmonic excitation of the mooring line, the dynamic motion and the tension were also presented.

  • PDF

Stratified steam explosion energetics

  • Jo, HangJin;Wang, Jun;Corradini, Michael
    • Nuclear Engineering and Technology
    • /
    • v.51 no.1
    • /
    • pp.95-103
    • /
    • 2019
  • Vapor explosions can be classified in terms of modes of contact between the hot molten fuel and the coolant, since different contact modes may affect fuel-coolant mixing and subsequent vapor explosion energetics. It is generally accepted that most vapor explosion phenomena fall into three different modes of contact; fuel pouring into coolant, coolant injection into fuel and stratified fuel-coolant layers. In this study, we review previous stratified steam explosion experiments as well as recent experiments performed at the KTH in Sweden. While experiments with prototypic reactor materials are minimal, we do note that generally the energetics is limited for the stratified mode of contact. When the fuel mass involved in a steam explosion in a stratified geometry is compared to a pool geometry based on geometrical aspects, one can conclude that there is a very limited set of conditions (when melt jet diameter is small) under which a steam explosion is more energetic in a stratified geometry. However, under these limited conditions the absolute energetic explosion output would still be small because the total fuel mass involved would be limited.

Development of a Design System for Multi-Stage Gear Drives (2nd Report : Development of a Generalized New Design Algortitm

  • Chong, Tae-Hyong;Inho Bae
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.2 no.2
    • /
    • pp.65-72
    • /
    • 2001
  • The design of multi-stage gear drives is a time-consuming process, since on includes more complicated problems, which are not considered in the design of single-stage gear drives. The designer has th determine the number of reduction stages and the gear ratios of each reduction state. In addition, the design problems include not only the dimensional design but also the configuration design of gear drive elements. There is no definite rule and principle for these types of design problems. Thus the design practices largely depend on the sense and the experiences of the designer , and consequently result in undesirable design solution. We propose a new generalized design algorithm to support the designer at the preliminary design phase of multi-stage gear drives. The proposed design algorithm automates the design process by integrating the dimensional design and the configuration design process. The algorithm consists of four steps. In the first step, a designer determines the number of reduction stage. In the second step. gear ratios se chosen by using the random search method. In the third step, the values of basic design parameter are chosen by using the generate and test method. Then, the values of other dimension, such ad pitch diameter, outer diameter, and face width, are calculated for the configuration design in the final step. The strength and durability of a gear is guaranteed by the bending strength and the pitting resistance rating practices by using the AGMA rating formulas. In the final step, the configuration design is carried out b using the simulated annealing algorithm. The positions of gears and shafts are determined to minimize the geometrical volume(size) of a gearbox, while satisfying spatial constraints between them. These steps are carried out iteratively until a desirable solution is acquired. The propose design algorithm has been applied to the preliminary design of four-stage gear drives in order to validate the availability. The design solution have shown considerably good results in both aspects of the dimensional and the configuration design.

  • PDF

A rapid assessment methodology for bridges damaged by truck strikes

  • Stull, C.J.;Earls, C.J.
    • Steel and Composite Structures
    • /
    • v.9 no.3
    • /
    • pp.223-237
    • /
    • 2009
  • The present research aims to develop a methodology to rapidly assess bridges with damage to the superstructure, caused by overheight trucks or lower-than-average overhead clearance. Terrestrial laser scanning and image processing techniques are combined with the finite element method to arrive at an analytical model which is more accurate, with respect to the complex geometrical aspects of the bridge in its damaged configuration. ""Virtual load testing"" may subsequently be carried out on this analytical model to determine the reserve capacity of the structure in an objective manner.

Stiffness Determination Of A Bolted Member Using Optimization Technique (최적화 기법을 이용한 보울트 체결체의 강성 평가)

  • 김태완;조덕상;성기광;손용수;박성호
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1993.04a
    • /
    • pp.151-157
    • /
    • 1993
  • In this paper a useful method on evaluating the joint stiffness of bolted memeber was introduced using optimization technique on the basis of Finite Element Method. A finite element model having one directional gap element at bo undary area was introduced to compensate the prying force in jointed members which might caused by geometrical configuration of members. Results showed a good aggrement with classical method in certain range and will be available to definine the design margine of pre-load design.

  • PDF

Measurement of the Effective Thermal Conductivity of Porous Media in the Mockup Apparatus of Reactor Vessel (원자로 모의 다공질 매체의 유효 열전달 계수 측정)

  • 김용균;황종선;이용범;최석기;남호윤
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.11a
    • /
    • pp.447-450
    • /
    • 1997
  • Temperature distribution measurements in the mockup apparatus of reactor vessel were performed to determine the effective thermal conductivity of Al powder porous media where stainless steel tubes were installed with different geometry. The temperature distributions at four separated sections with different arrangements of porous media have different slopes according to the geometrical configuration. From the measured temperature distribution, effective thermal conductivity have been derived using the least square fitting method.

  • PDF

Thruster Configuration Optimisation on COMS and Preliminary Performances Analysis (COMS의 추력기 형상 최적화 및 예비성능 분석)

  • Park, Yeong-Ung
    • Aerospace Engineering and Technology
    • /
    • v.5 no.2
    • /
    • pp.114-118
    • /
    • 2006
  • This paper describes the thrusters configuration optimized in preliminary performances for COMS (Communication, Ocean and Meteorological Satellite). The exact values of the thrusters tilt angles must be frozen for the manufacturing of COMS platform based on the EUROSTAR 3000 platform as these angles depend on the spacecraft center of mass position and thrusters location, the definition process has to be performed specifically for COMB. Concerning pitch control thrusters (6, 7), South thrusters (1, 2, 3), and East/West thrusters (4. ~, their optimum positions and force orientations based on the thrusters A/B middle position and MOL (Middle Of Life) are obtained. The torques of thrusters (plume and geometrical torques) are minimized to improve the preliminary performance of thrusters.

  • PDF