• Title/Summary/Keyword: geometric mapping

Search Result 176, Processing Time 0.023 seconds

Feature Extraction System for Land Cover Changes Based on Segmentation

  • Jung, Myung-Hee;Yun, Eui-Jung
    • Korean Journal of Remote Sensing
    • /
    • v.20 no.3
    • /
    • pp.207-214
    • /
    • 2004
  • This study focused on providing a methodology to utilize temporal information obtained from remotely sensed data for monitoring a wide variety of targets on the earth's surface. Generally, a methodology in understanding of global changes is composed of mapping, quantifying, and monitoring changes in the physical characteristics of land cover. The selected processing and analysis technique affects the quality of the obtained information. In this research, feature extraction methodology is proposed based on segmentation. It requires a series of processing of multitempotal images: preprocessing of geometric and radiometric correction, image subtraction/thresholding technique, and segmentation/thresholding. It results in the mapping of the change-detected areas. Here, the appropriate methods are studied for each step and especially, in segmentation process, a method to delineate the exact boundaries of features is investigated in multiresolution framework to reduce computational complexity for multitemporal images of large size.

Automated texture mapping for 3D modeling of objects with complex shapes --- a case study of archaeological ruins

  • Fujiwara, Hidetomo;Nakagawa, Masafumi;Shibasaki, Ryosuke
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1177-1179
    • /
    • 2003
  • Recently, the ground-based laser profiler is used for acquisition of 3D spatial information of a rchaeological objects. However, it is very difficult to measure complicated objects, because of a relatively low-resolution. On the other hand, texture mapping can be a solution to complement the low resolution, and to generate 3D model with higher fidelity. But, a huge cost is required for the construction of textured 3D model, because huge labor is demanded, and the work depends on editor's experiences and skills . Moreover, the accuracy of data would be lost during the editing works. In this research, using the laser profiler and a non-calibrated digital camera, a method is proposed for the automatic generation of 3D model by integrating these data. At first, region segmentation is applied to laser range data to extract geometric features of an object in the laser range data. Various information such as normal vectors of planes, distances from a sensor and a sun-direction are used in this processing. Next, an image segmentation is also applied to the digital camera images, which include the same object. Then, geometrical relations are determined by corresponding the features extracted in the laser range data and digital camera’ images. By projecting digital camera image onto the surface data reconstructed from laser range image, the 3D texture model was generated automatically.

  • PDF

Design of a Feature-based Multi-viewpoint Design Automation System

  • Lee, Kwang-Hoon;McMahon, Chris A.;Lee, Kwan-H.
    • International Journal of CAD/CAM
    • /
    • v.3 no.1_2
    • /
    • pp.67-75
    • /
    • 2003
  • Viewpoint-dependent feature-based modelling in computer-aided design is developed for the purposes of supporting engineering design representation and automation. The approach of this paper uses a combination of a multi-level modelling approach. This has two stages of mapping between models, and the multi-level model approach is implemented in three-level architecture. Top of this level is a feature-based description for each viewpoint, comprising a combination of form features and other features such as loads and constraints for analysis. The middle level is an executable representation of the feature model. The bottom of this multi-level modelling is a evaluation of a feature-based CAD model obtained by executable feature representations defined in the middle level. The mappings involved in the system comprise firstly, mapping between the top level feature representations associated with different viewpoints, for example for the geometric simplification and addition of boundary conditions associated with moving from a design model to an analysis model, and secondly mapping between the top level and the middle level representations in which the feature model is transformed into the executable representation. Because an executable representation is used as the intermediate layer, the low level evaluation can be active. The example will be implemented with an analysis model which is evaluated and for which results are output. This multi-level modelling approach will be investigated within the framework aimed for the design automation with a feature-based model.

Improved Georeferencing of a Wearable Indoor Mapping System Using NDT and Sensor Integration

  • Do, Linh Giang;Kim, Changjae;Kim, Han Sae
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.5
    • /
    • pp.425-433
    • /
    • 2020
  • Three-dimensional data has been used for different applications such as robotics, building reconstruction, and so on. 3D data can be generated from an optical camera or a laser scanner. Especially, a wearable multi-sensor system including the above-mentioned sensors is an optimized structure that can overcome the drawbacks of each sensor. After finding the geometric relationships between sensors, georeferencing of the datasets acquired from the moving system, should be carried out. Especially, in an indoor environment, error propagation always causes problem in the georeferencing process. To improve the accuracy of this process, other sources of data were used to combine with LiDAR (Light Detection and Ranging) data, and various registration methods were also tested to find the most suitable way. More specifically, this paper proposed a new process of NDT (Normal Distribution Transform) to register the LiDAR point cloud, with additional information from other sensors. For real experiment, a wearable mapping system was used to acquire datasets in an indoor environment. The results showed that applying the new process of NDT and combining LiDAR data with IMU (Inertial Measurement Unit) information achieved the best result with the RMSE 0.063 m.

Study on Seabed Mapping using Two Sonar Devices for AUV Application (복수의 수중 소나를 활용한 수중 로봇의 3차원 지형 맵핑에 관한 연구)

  • Joe, Hangil;Yu, Son-Cheol
    • The Journal of Korea Robotics Society
    • /
    • v.16 no.2
    • /
    • pp.94-102
    • /
    • 2021
  • This study addresses a method for 3D reconstruction using acoustic data with heterogeneous sonar devices: Forward-Looking Multibeam Sonar (FLMS) and Profiling Sonar (PS). The challenges in sonar image processing are perceptual ambiguity, the loss of elevation information, and low signal to noise ratio, which are caused by the ranging and intensity-based image generation mechanism of sonars. The conventional approaches utilize additional constraints such as Lambertian reflection and redundant data at various positions, but they are vulnerable to environmental conditions. Our approach is to use two sonars that have a complementary data type. Typically, the sonars provide reliable information in the horizontal but, the loss of elevation information degrades the quality of data in the vertical. To overcome the characteristic of sonar devices, we adopt the crossed installation in such a way that the PS is laid down on its side and mounted on the top of FLMS. From the installation, FLMS scans horizontal information and PS obtains a vertical profile of the front area of AUV. For the fusion of the two sonar data, we propose the probabilistic approach. A likelihood map using geometric constraints between two sonar devices is built and a monte-carlo experiment using a derived model is conducted to extract 3D points. To verify the proposed method, we conducted a simulation and field test. As a result, a consistent seabed map was obtained. This method can be utilized for 3D seabed mapping with an AUV.

SOME GEOMETRIC INEQUALITIES OF MATHEMATICAL CONDUCTANCE

  • Chung, Bo-Hyun
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.26 no.2
    • /
    • pp.315-321
    • /
    • 2013
  • Let $D_0$, $D_1{\subset}\bar{R}^n$ be non-empty sets and let ${\Gamma}$ be the family of all closed curves which join $D_0$ to $D_1$. In this note, we introduce the concept of the mathematical conductance $C({\Gamma})$ of a curve family ${\Gamma}$ and examine some basic properties of mathematical conductance. And we obtain the inequalities in connection with capacity of condensers.

U-FLATNESS AND NON-EXPANSIVE MAPPINGS IN BANACH SPACES

  • Gao, Ji;Saejung, Satit
    • Journal of the Korean Mathematical Society
    • /
    • v.54 no.2
    • /
    • pp.493-506
    • /
    • 2017
  • In this paper, we define the modulus of n-dimensional U-flatness as the determinant of an $(n+1){\times}(n+1)$ matrix. The properties of the modulus are investigated and the relationships between this modulus and other geometric parameters of Banach spaces are studied. Some results on fixed point theory for non-expansive mappings and normal structure in Banach spaces are obtained.

GEOMETRIC SIMPLICIAL EMBEDDINGS OF ARC-TYPE GRAPHS

  • Parlier, Hugo;Weber, Ashley
    • Journal of the Korean Mathematical Society
    • /
    • v.57 no.5
    • /
    • pp.1103-1118
    • /
    • 2020
  • In this paper, we investigate a family of graphs associated to collections of arcs on surfaces. These multiarc graphs naturally interpolate between arc graphs and flip graphs, both well studied objects in low dimensional geometry and topology. We show a number of rigidity results, namely showing that, under certain complexity conditions, that simplicial maps between them only arise in the "obvious way". We also observe that, again under necessary complexity conditions, subsurface strata are convex. Put together, these results imply that certain simplicial maps always give rise to convex images.

Construction of Visual Space using Relief Texture Mapping (Relief Texture 매핑을 이용한 가상공간 구축)

  • 이은경;정영기
    • Proceedings of the IEEK Conference
    • /
    • 2003.07e
    • /
    • pp.1899-1902
    • /
    • 2003
  • Recently several methods have been developed for the virtual space construction. Generally, most of the methods are geometric-based rendering technic, but they are difficult to construct real-time rendering because of large data. In this paper, we present a three dimension image-based rendering method that enable a constant speed of real-time rendering regardless of object complexity in virtual space. The Proposed method shows good performance for the virtual space construction with high complexity.

  • PDF

CLASS-MAPPING PROPERTIES OF THE HOHLOV OPERATOR

  • Mishra, Akshaya K.;Panigrahi, Trailokya
    • Bulletin of the Korean Mathematical Society
    • /
    • v.48 no.1
    • /
    • pp.51-65
    • /
    • 2011
  • In the present paper sufficient conditions, in terms of hyper-geometric inequalities, are found so that the Hohlov operator preserves a certain subclass of close-to-convex functions (denoted by $R^{\tau}$ (A, B)) and transforms the classes consisting of k-uniformly convex functions, k-starlike functions and univalent starlike functions into $\cal{R}^{\tau}$ (A, B).