SOME GEOMETRIC INEQUALITIES OF MATHEMATICAL CONDUCTANCE

Bo-Hyun Chung*

Abstract

Let $D_{0}, D_{1} \subset \bar{R}^{n}$ be non-empty sets and let Γ be the family of all closed curves which join D_{0} to D_{1}. In this note, we introduce the concept of the mathematical conductance $C(\Gamma)$ of a curve family Γ and examine some basic properties of mathematical conductance. And we obtain the inequalities in connection with capacity of condensers.

1. Introduction

The mathematical conductance of a curve family is a basic tool in the theory of conformal mappings. The numerical value of the mathematical conductance is known only for a few curve families. Therefore good estimates are of importance. Several estimates are given in the paper ([1], [5], [6], [9]). And in Gehring [3], he has shown that the capacity is related to the mathematical conductance of a family of surfaces that separate the boundary components of a space ring E.

Throughout this paper, n is a fixed integer and $n \geq 2$. We denote the n-dimensional Euclidean space by R^{n} and its one-point compactification by $\bar{R}^{n}=R^{n} \cup\{\infty\}$. All topological operations are performed with respect to \bar{R}^{n}. Balls and spheres centered at $x \in R^{n}$ and with radius $r>0$ are denoted, respectively, by

$$
\begin{gathered}
B^{n}(x, r)=\left\{y \in R^{n}:|y-x|<r\right\} \\
S^{n-1}(x, r)=\partial B^{n}(x, r)=\left\{y \in R^{n}:|y-x|=r\right\}
\end{gathered}
$$

We employ the abbreviations

$$
B^{n}(r)=B^{n}(0, r), \quad B^{n}=B^{n}(1)
$$

[^0]$$
S^{n-1}(r)=S^{n-1}(0, r), \quad S^{n-1}=S^{n-1}(1)
$$

As a measure in R^{n} we use the n-dimensional m_{n}, where the subscript n may be omitted. And we abbreviate $\omega_{n}=m_{n}\left(B^{n}\right)$, where

$$
\omega_{n}=\frac{\pi^{\frac{n}{2}}}{G\left(1+\frac{n}{2}\right)},(G: \text { gamma function })
$$

2. Mathematical conductance

DEfinition 2.1. Given a family, Γ, of nonconstant curves γ in \bar{R}^{n}, we let $\operatorname{bmf}(\Gamma)$ denote the family of Borel measurable functions $\rho: R^{n} \rightarrow$ $[0, \infty)$ such that

$$
\begin{equation*}
\int_{\gamma} \rho d s \tag{2.1}
\end{equation*}
$$

for all locally rectifiable $\gamma \in \Gamma$. We call

$$
\begin{equation*}
C(\Gamma)=i n f_{\rho \in b m f(\Gamma)} \int_{R^{n}} \rho^{n} d m \tag{2.2}
\end{equation*}
$$

the mathematical conductance of Γ.
Example 2.2 ([11]). Let T be the rectangular parallelepiped with two parallel faces P_{1}, P_{2}. If Γ is the family of curves γ joining two parallel faces P_{1} and P_{2} of area A with distance d, then

$$
\begin{equation*}
C(\Gamma)=A \cdot d^{1-n} \tag{2.3}
\end{equation*}
$$

In fact, choose a Borel measurable functions $\rho \in \operatorname{bmf}(\Gamma)$ and let γ_{y} be the vertical segment which join P_{1} and a point y in the base P_{2}. Then $\gamma_{y} \in \Gamma$ and

$$
1 \leq\left(\int_{\gamma} \rho d s\right)^{n} \leq d^{n-1} \int_{\gamma_{y}} \rho^{n} d s
$$

This holds for all such y and hence

$$
\int_{T} \rho^{n} d m \geq \int_{P_{2}}\left(\int_{\gamma_{y}} \rho^{n} d s\right) d m_{n-1} \geq A \cdot d^{1-n} .
$$

Since ρ is arbitrary,

$$
C(\Gamma) \geq A \cdot d^{1-n} .
$$

Next, let

$$
\rho=\frac{1}{d}
$$

be inside the parallelepiped T and $\rho=0$ otherwise.

Then $\rho \in \operatorname{bmf}(\Gamma)$ and

$$
C(\Gamma) \leq \int_{T} \rho^{n} d m=A \cdot d^{1-n}
$$

Example 2.3. If Γ is the family of curves joining the sphere with center x_{0} and radius r_{1} to the concentric sphere of radius r_{2}, then

$$
\begin{equation*}
C(\Gamma)=n \omega_{n}\left(\log \frac{r_{2}}{r_{1}}\right)^{1-n} \tag{2.4}
\end{equation*}
$$

Proof. Choose $\rho \in \operatorname{bmf}(\Gamma)$ and let

$$
\gamma_{e}=\left\{x \mid x=r e, r_{1}<r<r_{2}\right\}
$$

be the radial segment in Γ and parallel to the unit vector e. Using Hölder's inequality (See [4], theorem 189, P.140) we obtain

$$
1 \leq\left(\int_{\gamma_{e}} \rho d s\right)^{n} \leq\left(\log \frac{r_{2}}{r_{1}}\right)^{n-1} \int_{r_{1}}^{r_{2}} \rho^{n} r^{n-1} d r
$$

Integrating over all e we obtain by Fubini's theorem in polar coordinates

$$
n \omega_{n} \leq\left(\log \frac{r_{2}}{r_{1}}\right)^{n-1} \int_{E^{*}} \rho^{n} d m
$$

where E^{*} is the spherical ring $r_{1}<|x|<r_{2}$. The equality holds for

$$
\rho=\frac{1}{|x| \log \frac{r_{2}}{r_{1}}}
$$

Thus

$$
C(\Gamma)=n \omega_{n}\left(\log \frac{r_{2}}{r_{1}}\right)^{1-n}
$$

Proposition 2.4 ([10]). If each curve γ_{1} in a family Γ_{1} contains a subcurve γ_{2} in a family Γ_{2}, then

$$
C\left(\Gamma_{1}\right) \leq C\left(\Gamma_{2}\right)
$$

In fact, choose a Borel measurable functions $\rho \in \operatorname{bmf}\left(\Gamma_{2}\right)$ and suppose $\gamma_{1} \in \Gamma_{1}$ is locally rectifiable. Then

$$
\int_{\gamma_{1}} \rho d s \geq \int_{\gamma_{2}} \rho d s
$$

where γ_{2} is the subcurve in Γ_{2}, and $\rho \in \operatorname{bmf}\left(\Gamma_{1}\right)$. Thus

$$
C\left(\Gamma_{1}\right) \leq \int_{R^{n}} \rho^{n} d m
$$

and taking the infimum over all such ρ yields

$$
\begin{equation*}
C\left(\Gamma_{1}\right) \leq C\left(\Gamma_{2}\right) . \tag{2.5}
\end{equation*}
$$

Consequently, the set of fewer and longer curves has the smaller mathematical conductance.

Proposition 2.5. For curve family Γ_{j},

$$
C\left(\cup_{j} \Gamma_{j}\right) \leq \sum_{j} C\left(\Gamma_{j}\right) .
$$

Proof. We may assume $C\left(\Gamma_{j}\right)<\infty$ for all j. Then given $\varepsilon>0$ we can choose a $\rho_{j} \in \operatorname{bmf}\left(\Gamma_{j}\right)$ such that

$$
\int_{R^{n}}\left(\rho_{j}\right)^{n} d m \leq C\left(\Gamma_{j}\right)+2^{-j} \varepsilon .
$$

Now let

$$
\rho=\sup _{j} \rho_{j}, \quad \Gamma=\cup_{j} \Gamma_{j} .
$$

Then $\rho: R^{n} \rightarrow[0, \infty)$ is Borel measurable. Moreover, if $\gamma \in \Gamma$ is locally rectifiable, then $\gamma \in \Gamma_{j}$ for some j,

$$
\int_{\gamma} \rho d s \geq \int_{\gamma} \rho_{j} d s \geq 1
$$

and hence $\rho \in \operatorname{bmf}(\Gamma)$ by definition 2.1. Thus

$$
\begin{align*}
C\left(\cup_{j} \Gamma_{j}\right) & =C(\Gamma) \\
& \leq \int_{R^{n}} \rho^{n} d m \leq \int_{R^{n}} \sum_{j}\left(\rho_{j}\right)^{n} d m \leq \sum_{j} C\left(\Gamma_{j}\right)+\varepsilon . \tag{2.6}
\end{align*}
$$

Proposition 2.6 ([1]). If $f: \bar{R}^{n} \rightarrow \bar{R}^{n}$ is a one to one conformal mapping, then

$$
\begin{equation*}
C(f(\Gamma))=C(\Gamma) . \tag{2.7}
\end{equation*}
$$

for all curve families Γ in \bar{R}^{n}.
In fact, choose a Borel measurable function $\rho^{\prime} \in \operatorname{bmf}(f(\Gamma))$, let

$$
\rho(x)=\rho^{\prime} \circ f(x)\left|f^{\prime}(x)\right|
$$

for $x \in R^{n}-\left\{f^{-1}(\infty)\right\}$, and let Γ_{0} be the family of $\gamma \in \Gamma$ which pass through $f^{-1}(\infty)$. Then

$$
C(\Gamma)=C\left(\Gamma-\Gamma_{0}\right), \quad \rho \in \operatorname{bmf}\left(\Gamma-\Gamma_{0}\right)
$$

and hence

$$
\begin{aligned}
C(\Gamma) \leq \int_{R^{n}} \rho^{n} d m & =\int_{R^{n}}\left(\rho^{\prime} \circ f\right)^{n}\left|f^{\prime}\right| d m \\
& =\int_{R^{n}}\left(\rho^{\prime} \circ f\right)^{n} J(f) d m \\
& =\int_{R^{n}}\left(\rho^{\prime}\right)^{n} d m .
\end{aligned}
$$

Taking the infimum over every such ρ^{\prime} gives

$$
C(\Gamma) \leq C(f(\Gamma))
$$

The opposite inequality follows by repeating the preceding argument with f replaced by f^{-1}.

3. Capacity of condensers

A condenser is a ring $E \subset \bar{R}^{n}$ whose complement is the union of two distinguished disjoint compact sets D_{0} and D_{1} in \bar{R}^{n}. We write

$$
E=E\left(D_{0}, D_{1}\right)
$$

Thus, ring is a condenser $E=E\left(D_{0}, D_{1}\right)$ where D_{0} and D_{1} are continua. We call D_{0} and D_{1} the complementary components of E.

Definition $3.1([9])$. We let $d(x, y)$ denote the chordal distance between points $x, y \in \bar{R}^{n}$. That is

$$
d(x, y)=|x-y| \cdot\left[\left(1+|x|^{2}\right)\left(1+|y|^{2}\right)\right]^{-\frac{1}{2}}, \quad x, y \neq \infty
$$

Let $\operatorname{bmf}(E)(\neq \emptyset)$ denote the family of functions $u: \bar{R}^{n} \rightarrow R^{1}$ with the following conditions :
(i) u is continuous in \bar{R}^{n} and u has distribution derivatives in R^{1},
(ii) $u=0$ on $D_{0}, u=1$ on D_{1},
(iii) $u(x)=\min \left\{\frac{d\left(x, D_{0}\right)}{d\left(D_{1}, D_{0}\right)}, 1\right\} \in \operatorname{bmf}(E)$.

We call

$$
\begin{equation*}
\operatorname{Cap}(E)=\inf _{u \in b m f(E)} \int_{E}|\nabla u|^{n} d m \tag{3.1}
\end{equation*}
$$

the capacity of E.

Theorem 3.2. If $E=E\left(D_{0}, D_{1}\right)$ is a condenser and if Γ is the family of curves γ joining D_{0} and D_{1} in E, then

$$
\begin{equation*}
C a p(E) \leq C(\Gamma) \tag{3.2}
\end{equation*}
$$

Proof. Choose a bounded continuous Borel measurable function $\rho \in$ $b m f(\Gamma)$ and let

$$
u(x)=\min \left\{1, \inf _{\gamma} \int_{\gamma} \rho d s\right\}
$$

for $x \in E$, where the infimum is taken over all locally rectifiable γ joining D_{0} to x in E. Then u has distribution derivatives and

$$
\lim _{x \rightarrow D_{0}} u(x)=0, \quad \lim _{x \rightarrow D_{1}} u(x)=1
$$

Hence we can extend u to \bar{R}^{n} so that $u \in \operatorname{bmf}(E)$. Then since $|\nabla u|=\rho$ in E,

$$
C a p(E) \leq \int_{E} \rho^{n} d m \leq \int_{R^{n}} \rho^{n} d m
$$

Another smoothing argument shows the infimum over such ρ gives $C(\Gamma)$. Thus

$$
C a p(E) \leq C(\Gamma)
$$

References

[1] P. Caraman, n-Dimensional Quasiconformal Mappings J. Editura Academic Bucuresti, Romania, 1974.
[2] E. Villamor, Geometric proofs of some classical results on boundary values for analytic functions, J. Canadian Mathematical Bulletin. 37 (1994), 263-269.
[3] F. W. Gehring, Quasiconformal mappings, J. Complex analysis and its applications. 11 (1976), 213-268.
[4] G. H. Hardy, J. E. Littlewood, and G. Polya, Inequalities, Univ. Press, Cambridge, 1988.
[5] O. Martio, S. Rickman, and J. Vaisala, Definitions for quasiregular mappings, J. Ann. Acad. Sci. Fenn. Ser. 448 (1969), 1-40.
[6] R. Nakki, Extension of Loewner's capacity theorem, J. Trans. Amer. Math. Soc. 180 (1973), 229-236.
[7] M. D. O'neill and R. E. Thurman, Extremal problems for Robin capacity, J. Complex Variables Theory and Applications 41 (2000).
[8] Y. Shen, Extremal problems for quasiconformal mappings, J. Mathematical Analysis and Applications. 247 (2000), 27-44.
[9] J. Vaisala, Lectures on n-Dimensional Quasiconformal Mappings, J. SpringerVerlag, New York, 1971.
[10] B. H. Chung, Some applications of extremal length to conformal imbeddings, J. Chungcheong. Math. Soc. 22 (2009), 211-216.
[11] B. H. Chung, Extremal length and geometric inequalities, J. Chungcheong Math. Soc. 20 (2007), 147-156.
*
Mathematics Section, College of Science and Technology
Hongik University
Sejong 339-701, Republic of Korea
E-mail: bohyun@hongik.ac.kr

[^0]: Received January 11, 2013; Accepted April 04, 2013.
 2010 Mathematics Subject Classification: Primary 30C20; Secondary 30C85, 30D40.

 Key words and phrases: mathematical conductance, conformal mapping, capacity.
 This work was supported by 2012 Hongik University Research Fund.

