• Title/Summary/Keyword: geometric chart

Search Result 26, Processing Time 0.025 seconds

Adjustment of Control Limits for Geometric Charts

  • Kim, Byung Jun;Lee, Jaeheon
    • Communications for Statistical Applications and Methods
    • /
    • v.22 no.5
    • /
    • pp.519-530
    • /
    • 2015
  • The geometric chart has proven more effective than Shewhart p or np charts to monitor the proportion nonconforming in high-quality processes. Implementing a geometric chart commonly requires the assumption that the in-control proportion nonconforming is known or accurately estimated. However, accurate parameter estimation is very difficult and may require a larger sample size than that available in practice in high-quality process where the proportion of nonconforming items is very small. Thus, the error in the parameter estimation increases and may lead to deterioration in the performance of the control chart if a sample size is inadequate. We suggest adjusting the control limits in order to improve the performance when a sample size is insufficient to estimate the parameter. We propose a linear function for the adjustment constant, which is a function of the sample size, the number of nonconforming items in a sample, and the false alarm rate. We also compare the performance of the geometric charts without and with adjustment using the expected value of the average run length (ARL) and the standard deviation of the ARL (SDARL).

Comparisons of the Performance with Bayes Estimator and MLE for Control Charts Based on Geometric Distribution (기하분포에 기초한 관리도에서 베이즈추정량과 최대우도추정량 사용의 성능 비교)

  • Hong, Hwiju;Lee, Jaeheon
    • The Korean Journal of Applied Statistics
    • /
    • v.28 no.5
    • /
    • pp.907-920
    • /
    • 2015
  • Charts based on geometric distribution are effective to monitor the proportion of nonconforming items in high-quality processes where the in-control proportion nonconforming is low. The implementation of this chart is often based on the assumption that in-control proportion nonconforming is known or accurately estimated. However, accurate parameter estimation is very difficult and may require a larger sample size than that available in practice for high-quality process where the proportion of nonconforming items is very small. An inaccurate estimate of the parameter can result in estimated control limits that cause unreliability in the monitoring process. The maximum likelihood estimator (MLE) is often used to estimate in-control proportion nonconforming. In this paper, we recommend a Bayes estimator for the in-control proportion nonconforming to incorporate practitioner knowledge and avoid estimation issues when no nonconforming items are observed in the Phase I sample. The effects of parameter estimation on the geometric chart and the geometric CUSUM chart are considered when the MLE and the Bayes estimator are used. The results show that chart performance with estimated control limits based on the Bayes estimator is generally better than that based on the MLE.

Integrated Management of Digital Topographic Map and Digital Nautical Chart Using Analysis of Control Points in Precise DGPS Surveying (정밀 DGPS측량의 기준점 분석에 따른 수치지형도와 수치해도의 통합관리)

  • Jang Yong-Gu;Kim Sang-Seok
    • Journal of Navigation and Port Research
    • /
    • v.29 no.3 s.99
    • /
    • pp.269-274
    • /
    • 2005
  • Geodetic surveying using precise GPS equipment are used without analysis with a statistical verification of GPS observed value and it was preformed by necessity to integration projection of digital topographic map and nautical Chart for integration geographic information system construction. The purpose of this study proposes method that improve accuracy of GPS observed value and direction that integrally manage digital topographic map and electronic nautical chart in analyzing the boundary line error between digital topographic map and nautical Chart. For improvement of the precision of GPS observed value, the author studied precision-analysis of GPS observed value by geometric strength and variance factor in 3 control points used in GPS network adjustment. And like this, produce EDM measurement using this GPS observation results and compare the whole boundary point error when set digital topographic map and nautical chart by these boundary.

Application of Marine Geographic Information System Using Analysis of Control Points in Postprocessing DGPS Surveying (후처리 DGPS측량의 기준점 분석을 이용한 해양지리정보시스템 적용)

  • 김진영;장용구;김상석;강인준
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2004.04a
    • /
    • pp.275-281
    • /
    • 2004
  • Geodetic surveying using precise GPS equipment are used without analysis with a statistical verification of GPS observed value and it was preformed by necessity to integration projection of digital topographic map and nautical Chart for integration geographic information system construction. The purpose of this study proposes method that improve accuracy of GPS observed value and direction that integrally manage digital topographic map and electronic nautical chart in analyzing the boundary line error between digital topographic map and nautical Chart. For improvement of the precision of GPS observed value, the author studied precision-analysis of GPS observed value by geometric strength and variance factor in 3 control points used in GPS network adjustment. This study compare the whole boundary point error When producing EDM measurement using this GPS observation results and setting digital topographic map and nautical chart by these boundary.

  • PDF

Geometric charts with bootstrap-based control limits using the Bayes estimator

  • Kim, Minji;Lee, Jaeheon
    • Communications for Statistical Applications and Methods
    • /
    • v.27 no.1
    • /
    • pp.65-77
    • /
    • 2020
  • Geometric charts are effective in monitoring the fraction nonconforming in high-quality processes. The in-control fraction nonconforming is unknown in most actual processes; therefore, it should be estimated using the Phase I sample. However, if the Phase I sample size is small the practitioner may not achieve the desired in-control performance because estimation errors can occur when the parameters are estimated. Therefore, in this paper, we adjust the control limits of geometric charts with the bootstrap algorithm to improve the in-control performance of charts with smaller sample sizes. The simulation results show that the adjustment with the bootstrap algorithm improves the in-control performance of geometric charts by controlling the probability that the in-control average run length has a value greater than the desired one. The out-of-control performance of geometric charts with adjusted limits is also discussed.

The Design of Control Chart Based on a Short-run Production Process (단속공정 품질관리도 설계)

  • 김종걸;정연승
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2000.11a
    • /
    • pp.217-234
    • /
    • 2000
  • Approximately normalized control charts, called Q charts, have been given Quesenberry(1991) for charting in process of short-run, job-shop, etc. We consider a Q chart with inspection error for job-shop floor under geometric distribution, which can be used for processes when a fraction nonconforming is very small. Our results would be applied for designing other control charts with inspection error.

  • PDF

Development of the ice resistance series chart for icebreaking ships

  • Lee, Chun-Ju;Joung, Tae-Hwan;Lew, Jae-Moon
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.6
    • /
    • pp.794-802
    • /
    • 2018
  • The ice resistance series charts for icebreaking ships were developed through a series of systematic model tests in the ice tank of the Korean Research Institute of Ship and Ocean Engineering (KRISO). Spencer's (1992) component-based scaling system for ship-ice model tests was applied to extend the model ship correlations. Beam to draft ratio (B/T), length to beam ratio (L/B), block coefficient ($C_B$) and stem angle (${\alpha}$) were selected as geometric parameters for hull form development. The basic hull form (S1) of twin pod type with B/T of 3.0, L/B of 6.0, $C_B$ of 0.75 and stem angle of $25^{\circ}$ was generated with a modern hull design concept. A total of 13 hulls were designed varying the geometric parameters; B/T of 2.5 and 3.5, L/B of 5.0 and 7.0, $C_B$ from 0.65 to 0.85 in intervals of 0.05, and 5 stem angles from $15^{\circ}$ to $35^{\circ}$. Ice resistance tests were first carried out with the basic hull form in level ice with suitable speed. Four more tests for $C_B$ variations from 0.65 to 0.85 were conducted and two more for beam to draft and length to beam ratios were also performed to study the effect of the geometric parameters on ice resistance. Ice resistance tests were summarized using the volumetric coefficient, $C_V$ ($={\nabla}/L^3$), instead of L/B and $C_B$ variations. Additional model tests were also carried out to account for the effect of the stem angle, ice thickness and ice strength on ice resistance. In order to develop the ice resistance series charts with a minimum number of experiments, the trends of the ice resistance obtained from the experiments were assumed to be similar for other model ship with different geometric parameters. A total of 18 sheets composed of combinations of three different beam to draft ratios and six block coefficients were developed as a parameter of $C_V$ in the low speed regions. Three correction charts were also developed for stem angles, ice thickness and ice strength respectively. The charts were applied to estimate ice resistance for existing icebreaking ships including ARAON, and the results were satisfactory with reasonable accuracy.

Ship Detection by Satellite Data: Radiometric and Geometric Calibrations of RADARSAT Data (위성 데이터에 의한 선박 탐지: RADARSAT의 대기보정과 기하보정)

  • Yang Chan-Su
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2004.05b
    • /
    • pp.49-52
    • /
    • 2004
  • RADARSAT is one of many possible data sources that can play an important role in marine surveillance including ship detection because radar sensors have the two primary advantages: all-weather and day or night imaging. However, atmospheric effects on SAR imaging can not be bypassed and any remote sensing image has various geometric distortions. In this study, radiometric and geometric calibrations for RADARSAT/SAR data are tried using SGX products georeferenced as level 1. For radiometric calibration, information on the magnitude of the radar backscatter coefficient of the imaged terrain is extracted from the processed image data. Conversion method of the pixel DNs to beta nought and sigma nought is also investigated Finally, automatic geometric calibration based on the header file is compared to a marine chart.

  • PDF

Development of KD-Propeller Series Using a New Blade Section

  • Lee, Jin-Tae;Kim, Moon-Chan;Ahn, Jong-Woo;Kim, Ho-Chung
    • Selected Papers of The Society of Naval Architects of Korea
    • /
    • v.1 no.1
    • /
    • pp.76-90
    • /
    • 1993
  • A new propeller series is developed using the newly developed blade section (KH 18 section) which has better cavitation characteristics and higher lift-drag ratio at wade angle-of-attack range than a conventional section. The radial patch distribution of the new series propellers is variable stance they were designed adaptively to a typical wake distribution. Basic geometric particulars of the series propellers. such as chord length, thickness, skew and rake distributions, are determined on the basis of recent full scale propeller geometric data. The series is developed for propellers having 4 blades, and blade area ratios of 0.3, 0.45, 0.6 and 0.75. Mean pitch ratios are varied as 0.5, 0.6, 0.7, 0.95 and 1.1 for each blade area ratio. The new propeller series consists of 20 propellers and is named as the KD(KRISO-DAEWOO)-propeller series. Propeller open-water tests are performed at the towing tank, and cavitation observation tests and fluctuating pressure tests are carried out at the cavitation tunnel of KRISO. $B_{p}-\delta$ curves, which can be used to select the optimum propeller diameter at the preliminary design stage, are derived from a regression analysis of the propeller open-water test results. The KD-cavitation chart is derived from the cavitation observation test results by choosing the local maximum lift coefficient and the local cavitation number as parameters. The cavity extent predicted by the KD-cavitation chart would be more accurate compared to that by an existing cavitation charts, such as the Burrll's cavitation chart, since the former is derived from the cavitation observation test results in a typical ship's wake, while the lather is derived from the test results in a uniform flow.

  • PDF

A Study on the Alternative ARL Using Generalized Geometric Distribution (일반화 기하분포를 이용한 ARL의 수정에 관한 연구)

  • 문명상
    • Journal of Korean Society for Quality Management
    • /
    • v.27 no.4
    • /
    • pp.143-152
    • /
    • 1999
  • In Shewhart control chart, the average run length(ARL) is calculated using the mean of a conventional geometric distribution(CGD) assuming a sequence of identical and independent Bernoulli trials. In this, the success probability of CGB is the probability that any point exceeds the control limits. When the process is in-control state, there is no problem in the above assumption since the probability that any point exceeds the control limits does not change if the in-control state continues. However, if the out-of-control state begins and continues during the process, the probability of exceeding the control limits may take two forms. First, once the out-of-control state begins with exceeding probability p, it continues with the same exceeding probability p. Second, after the out-of-control state begins, the exceeding probabilities may very according to some pattern. In the first case, ARL is the mean of CGD with success probability p as usual. But in the second case, the assumption of a sequence of identical and independent Bernoulli trials is invalid and we can not use the mean of CGD as ARL. This paper concentrate on that point. By adopting one generalized binomial distribution(GBD) model that allows correlated Bernoulli trials, generalized geometric distribution(GGD) is defined and its mean is derived to find an alternative ARL when the process is in out-of-control state and the exceeding probabilities take the second form mentioned in the above. Small-scale simulation is performed to show how an alternative ARL works.

  • PDF