• Title/Summary/Keyword: geological survey

Search Result 625, Processing Time 0.026 seconds

Case Study of Ground Penetrating Radar for Subsurface Investigation (지하레이더 탐사법을 이용한 지반조사 사례 연구)

  • 문장수;김세환;남욱현;오영철
    • The Journal of Engineering Geology
    • /
    • v.7 no.3
    • /
    • pp.161-171
    • /
    • 1997
  • The exact information on geological structures and characteristics of the subsurface must be acquired to secure quality and safety of constructions. GPR technique, one of the most updated geophysical methods, is known for its applicability to shallow-depth underground surveys. The purpose of this study is to examine the usefulness of GPR method in constructions for detailed subsurface investigations, especially detecting the boundary between basement rock and its overburden. To find appropriate depths of the geological boundaries, it is necessary to obtain velocity of electromagnetic wave propagating into the ground. Wave velocity 0.096 m/ns estimated from velocity analysis using CMP gathers is used for depth conversion from time section. The depths of geological boundaries from GPR profiles are very well correlated with boring data. In addition, GPR survey has found some undulations of the geological boundaries due to weathering, which cannot be provided by conventional coring approaches.

  • PDF

Geological Characteristics of a Wetland in Mt. Geumjeong (금정산 산지습지의 지질학적 특성)

  • Cha, Eun-Jee;Hamm, Se-Yeong;Kim, Hyun-Ji;Lee, Jeong-Hwan;Cheong, Jae-Yeol;Ok, Soon-Il
    • Journal of Wetlands Research
    • /
    • v.12 no.2
    • /
    • pp.1-12
    • /
    • 2010
  • This study examined geological characteristics of a wetland in Mountain Geumjeong in Busan Metropolitan City. Field survey and laboratory tests were performed to identify topographic features, geological and structural geological characteristics, rock strength along the distance from the wetland, soil profile in the wetland, and chemical property of the wetland soil. The bedrock of the wetland consists of hornblende granite. Hornblende granite and rhyolitic rock around the wetland have the joints with strikes of N-S, E-W, and NE-SW directions and with higher dips greater than $60^{\circ}$. Lower rock strength and higher weathering grades take place towards the wetlands. According to X-ray diffraction analysis of wetland soil samples, kaolinite, montmorillonite, and gibbsite appear which demonstrate weathered products of feldspars in the hornblende granite. The soil profile in the wetland comprises O, A, B, and C horizons from the land surface. The contents of the organic matters decrease from shallow parts to deeper parts of the soil profile. In addition, $K^+$ and $Na^+$ originating from the weathering of feldspars are dominant components among inorganic ions in the wetland soil.

Low-enthalpy geothermal exploration in Pohang area, Korea

  • Song Yoonho;Lee Seong Kon;Kim Hyoung Chan;Kee Weon-Seo;Park Yeong-Sue;Lim Mu-Taek;Son Jeong-Sui;Cho Seong-Jun;Lim Seong-Keun;Uchida Toshihiro;Mitsuhata Yuji;Lee Tae Jong;Lee Heuisoon
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.470-475
    • /
    • 2003
  • KIGAM (Korea Institute of Geoscience and Mineral Resources) launched a new project to develop the low-enthalpy geothermal water in the area showing high geothermal anomaly, north of Pohang city, for large-scale space heating from KORP (Korea Research Council of Public Science & Technology) funding. Surface geologic and geophysical surveys including Landsat TM image analysis, gravity, magnetic, Magnetotelluric (MT) and controlled-source audio-frequency MT (CSAMT) and self-potential (SP) methods have been conducted and the possible fracture zone was found that would serve as deeply connected geothermal water conduit. By the end of 2003, two test wells of 1 km depth will be drilled and various kinds of borehole survey along with additional MT measurements and sample analysis will follow and then the detailed subsurface condition is to be characterized. Next step would be drilling the production well of 2 km depth and all further steps remain to be determined depending upon the results of the test well studies.

  • PDF

Case Study of Assessment of Slope Stability and Geophysical Survey in Weathered Gneiss (편마암 풍화사면에서의 지구물리탐사 및 안정성 해석 사례연구)

  • Kim, Man-Il;Kim, Jong-Tae;Kim, Jae-Hong;Ro, Byung-Don;Jeong, Gyo-Cheol
    • The Journal of Engineering Geology
    • /
    • v.18 no.3
    • /
    • pp.287-295
    • /
    • 2008
  • Rock slope has a variety of irregular discontinuities and represents a discontinuous mass. Rock joint plays an important role of control hydraulic and mechanic movements in the rock mass. These characteristics between hydraulic and mechanic movements at the rock joints could be represent difference. Therefore they are quiet important factor for slope design. In this study the weathered rock slopes were carried out to analysis of slope stability and geophysical survey. The electrical resistivity survey with dipole-dipole array conducted five profiling sites, and SWEDGE and SLIDE for slope stability analysis were applied on 20 rock slopes far assessment of slope stability and understand to geological situations due to the weathering.

Investigations of Faults using array CSAMT Method (단층조사를 위한 array CSAMT 적용사례)

  • Lee Sang Kyu;Hwang Se Ho;Lee Dong Young;Lee Jin-Soo;Hwang Hak Soo;Park In Hwa
    • Geophysics and Geophysical Exploration
    • /
    • v.1 no.2
    • /
    • pp.92-100
    • /
    • 1998
  • Array CSAMT surveys were conducted in two areas where it was not easy to identify the presence of faults only with geological survey because of thick overburden. The purpose of these surveys were to locate the faults and to delineate the deep resistivity structures around the faults. The steep dip lineaments having high contrast in resistivity laterally and the low resistive zones having some width in the resistivity sections were interpreted as faults and fracture zones associated with faults, respectively, The good applicability of array CSAMT to the investigation of fault was recognized owing to the agreement between the interpretation results of array CSAMT and the conclusive evidences collected by the following geological survey. The evidences includes the recent exposure of fault and the trajectory of fault evidences of the survey line. A comparison of the applicabilities of array CSAMT method and the resistivity method using dipole-dipole array was presented with the results of both methods along a same traverse line.

  • PDF

Slope stability method establish and carry out in vertical slope for tunnel excavation (터널의 굴착을 위한 수직사면의 안정대책 방안 수립 및 시행)

  • Park, Chal-Sook;Kim, Jun-Yong;Kwan, Han;Kim, Min-Jo;Choi, Yu-Kyung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.992-1006
    • /
    • 2008
  • The tunnel type spillways is under construction to increasing water reservoir capacity in Dae-am dam. Cutting-slope adjacent to outlet of spillways had been originally designed to be 63 degrees and about 65m in height. Examination is carried out in preceding construction that it is caused to some problems possibility which of machine for slope cutting couldn't approach to the site, blasting for cutting slope might have negative influence on highway and roads nearby, and fine view along the Tae-hwa river would be eliminated. In order to establish stability of tunnel and more friendly natural environment that we are carry out detailed geological surface survey and analysis of slope stability. So, we are design and construct for tunnel excavation with possible method that it is keep up natural slope. The result of survey and analysis that natural slope was divided 3 zone(A, B, C zone). In A and B zone, in first removed floating rock, high tensile tension net is install that it prevent of release and falling of rock, in order to security during under working. In addition to, pre-stressed rock anchor is install purpose of security during tunnel excavation because of fault zone near vertical developed above excavation level. Zone C is relatively good condition of ground, design is only carry out random rock bolt. All zone are designed and constructed drainage hole for groundwater and surface water is easily drain. Desinged slpoe is harmony with near natural environment. Successfully, construction is completed.

  • PDF

A Study on the Shallow Marine Site Survey using Seismic Reflection and Refraction Method (탄성파 반사법 및 굴절법을 이용한 천해저 지반조사에 대한 연구)

  • Shin, Sung-Ryul;Kim, Chan-Su;Jo, Churl-Hyun
    • Geophysics and Geophysical Exploration
    • /
    • v.11 no.2
    • /
    • pp.109-115
    • /
    • 2008
  • It is very important to estimate the physical properties of survey area and delineate the geological basement in marine site survey for the design of offshore structures. For the purpose of providing high quality data by means of engineering site survey, it is necessary to apply several survey techniques and carry out the integrated interpretation to each other. In this study, we applied single channel seismic reflection method and OBC (Ocean Bottom Cable) type seismic refraction method at shallow marine. We used a dual boomer-single channel streamer as a source-receiver in seismic reflection survey and airgun source-the developed OBC type streamer in seismic refraction survey. We made 24 channels OBC type streamer which has 4m channel interval and each channel is composed of single hydrophone and preamplifier. We tested the field applicability of the proposed method and applied the typical seismic data processing methods to the obtained reflection data in order to enhance the data quality and image resolution. In order to estimate the geological velocity distribution from refraction data, seismic refraction tomography technique was applied. Therefore, we could successfully perform time-depth conversion using the velocity information as an integrated interpretation. The proposed method could provide reliable geologic information such as sediment layer thickness and 3D basement depth map.

GIS-based Data-driven Geological Data Integration using Fuzzy Logic: Theory and Application (퍼지 이론을 이용한 GIS기반 자료유도형 지질자료 통합의 이론과 응용)

  • ;;Chang-Jo F. Chung
    • Economic and Environmental Geology
    • /
    • v.36 no.3
    • /
    • pp.243-255
    • /
    • 2003
  • The mathematical models for GIS-based spatial data integration have been developed for geological applications such as mineral potential mapping or landslide susceptibility analysis. Among various models, the effectiveness of fuzzy logic based integration of multiple sets of geological data is investigated and discussed. Unlike a traditional target-driven fuzzy integration approach, we propose a data-driven approach that is derived from statistical relationships between the integration target and related spatial geological data. The proposed approach consists of four analytical steps; data representation, fuzzy combination, defuzzification and validation. For data representation, the fuzzy membership functions based on the likelihood ratio functions are proposed. To integrate them, the fuzzy inference network is designed that can combine a variety of different fuzzy operators. Defuzzification is carried out to effectively visualize the relative possibility levels from the integrated results. Finally, a validation approach based on the spatial partitioning of integration targets is proposed to quantitatively compare various fuzzy integration maps and obtain a meaningful interpretation with respect to future events. The effectiveness and some suggestions of the schemes proposed here are illustrated by describing a case study for landslide susceptibility analysis. The case study demonstrates that the proposed schemes can effectively identify areas that are susceptible to landslides and ${\gamma}$ operator shows the better prediction power than the results using max and min operators from the validation procedure.

Potential as a Geological Field Course of Mt. Geumdang located in Gwangju, Korea (광주광역시에 위치한 금당산의 지질학습장으로서 활용성)

  • Ahn, Kun Sang
    • Journal of the Korean earth science society
    • /
    • v.34 no.3
    • /
    • pp.235-248
    • /
    • 2013
  • The purpose of this study is to investigate a feasibility of a small mountain as a field work site on geological features in Earth sciences classes at all levels. Mt. Geumdang with the height of 305 meters from the sea level is located in the metropolitan city of Gwangju, southern part of Korea. The study reviews the human and natural geography, geological features, geomorphic resources, landscapes, and conveniences of the mountain for a possibility of meaningful field work. The population within the distance of 5 km from the mountain stands at about 620,000 and 170,000 of them are students and teachers. Mt. Geumdang has a warm temperature climate with low rainfall throughout the year, so it seems suitable for a field survey. Road network and public transportation system around the area are well-developed and easily accessible. Mt. Geumdang shows various rock type and geological structures. The basement rock is Gwangju granite, which is plutonic body of the Jurassic period. Also, granophyre (micrographic granite) and various volcanic rocks distributed as bedded tuff, lapilli tuff, and rhyolite of the Cretaceous period. Many andesitic and felsic dykes were intruded into the rock by joint system. In Mt. Geumdang, many geomorphic resources are found such as U shaped mountain, joint, fault, lamination, gnamma, tor, cliff, groove, block stream and block field, regolith, and saprolite. It has a beautiful mountain scenery including the view of whole shape of Mt. Mudeung, panoramic view of the town, Pungam lake, World Cup stadium and sunrise and sunset. Furthermore, the area has ecologic study facilities related to geology, emergency medical and convenience facilities for field works. In conclusion, Mt. Geumdang is highly feasible for geological field studies at all levels.

A TBM data-based ground prediction using deep neural network (심층 신경망을 이용한 TBM 데이터 기반의 굴착 지반 예측 연구)

  • Kim, Tae-Hwan;Kwak, No-Sang;Kim, Taek Kon;Jung, Sabum;Ko, Tae Young
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.1
    • /
    • pp.13-24
    • /
    • 2021
  • Tunnel boring machine (TBM) is widely used for tunnel excavation in hard rock and soft ground. In the perspective of TBM-based tunneling, one of the main challenges is to drive the machine optimally according to varying geological conditions, which could significantly lead to saving highly expensive costs by reducing the total operation time. Generally, drilling investigations are conducted to survey the geological ground before the TBM tunneling. However, it is difficult to provide the precise ground information over the whole tunnel path to operators because it acquires insufficient samples around the path sparsely and irregularly. To overcome this issue, in this study, we proposed a geological type classification system using the TBM operating data recorded in a 5 s sampling rate. We first categorized the various geological conditions (here, we limit to granite) as three geological types (i.e., rock, soil, and mixed type). Then, we applied the preprocessing methods including outlier rejection, normalization, and extracting input features, etc. We adopted a deep neural network (DNN), which has 6 hidden layers, to classify the geological types based on TBM operating data. We evaluated the classification system using the 10-fold cross-validation. Average classification accuracy presents the 75.4% (here, the total number of data were 388,639 samples). Our experimental results still need to improve accuracy but show that geology information classification technique based on TBM operating data could be utilized in the real environment to complement the sparse ground information.