• Title/Summary/Keyword: geoid

Search Result 136, Processing Time 0.026 seconds

Geoid of Western Mongolia from airborne gravity data 2004

  • Forsberg, Rene;Olesen, A.;Dalkhaa, Munkhtsetseg;Begzsuren, Amarzaya
    • 한국지형공간정보학회:학술대회논문집
    • /
    • 2005.08a
    • /
    • pp.93-99
    • /
    • 2005
  • This paper summarizes a preliminary geoid computation for western Mongolia, utilizing the airborne data collected fall 2004, as part of the NGA-DNSC-ALAGaC-MonMap cooperative airborne gravity project. A gravimetric geoid has been computed using the airborne gravity data, SRTM terrain models and GRACE/EGM global fields. The gravimetric geoid has subsequently been fitted to GPS-leveling data across Western Mongolia, as well as for a special Ulaanbaatar city geoid model.

  • PDF

Utilizing Precise Geoid Model for Conversion of Airborne LiDAR Data into Orthometric Height (항공라이다데이터 정표고 변환을 위한 정밀지오이드 모델 이용)

  • Lee, Won-Choon;We, Gwang-Jae;Jung, Tae-Jun;Kwon, Oh-Seob
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.29 no.4
    • /
    • pp.351-357
    • /
    • 2011
  • In this study, we have intended to analyze the possibility of using the precise geoid model and to find the best geoid model for working by the airborne LiDAR system. So we have calculated the geoid height from the precise geoid models (KGEOID08, EGM2008, EIGEN-CG03C) and have analyzed results by comparing the geometric geoid height from surveying and geoid heights from geoid models. As a result, the KGEOID08 that had 0.152m of RMSE was assessed the best geoid model for making DEM(DTM) by airborne LiDAR system. Also we have found the needed arrangement and numbers of reference point when the KGEOID08 was used for conversion into orthometric height of LiDAR data.

Geoid Determination in South Korea from a Combination of Terrestrial and Airborne Gravity Anomaly Data

  • Jekeli, Christopher;Yang, Hyo Jin;Kwon, Jay Hyoun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.31 no.6_2
    • /
    • pp.567-576
    • /
    • 2013
  • The determination of the geoid in South Korea is a national imperative for the modernization of height datums, specifically the orthometric height and the dynamic height, that are used to monitor hydrological systems and environments with accuracy and easy revision, if necessary. The geometric heights above a reference ellipsoid, routinely obtained by GPS, lead immediately to vertical control with respect to the geoid for hydrological purposes if the geoid height above the ellipsoid is known accurately. The geoid height is determined from gravimetric data, traditionally ground data, but in recent times also from airborne data. This paper illustrates the basic concepts for combining these two types of data and gives a preliminary performance assessment of either set or their combination for the determination of the geoid in South Korea. It is shown that the most critical aspect of the combination is the gravitational effect of the topographic masses above the geoid, which, if not properly taken into account, introduces a significant bias of about 8 mgal in the gravity anomalies, and which can lead to geoid height bias errors of up to 10 cm. It is further confirmed and concluded that achieving better than 5 cm precision in geoid heights from gravimetry remains a challenge that can be surmounted only with the proper combination of terrestrial and airborne data, thus realizing higher data resolution over most of South Korea than currently available solely from the airborne data.

A Study on Geoid Model Development Method in Philipphines (필리핀 지오이드모델의 개발방안 연구)

  • Lee, Suk-Bae;Pena, Bonifasio Dela
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.27 no.6
    • /
    • pp.699-710
    • /
    • 2009
  • If a country has her geoid model, it could be determine accurate orthometric height because the geoid model could provide continuous equi-gravity potential surface. And it is possible to improve the coordinates accuracy of national control points through geodetic network adjustment considering geoidal heights. This study aims to find the best way to develop geoid model in Philippines which have similar topographic conditions as like Malaysia and Indonesia in Eastsouth asia. So, in this study, it is surveyed the general theories of geoid determination and development cases of geoid model in Asia and it is computed that the geoidal heights and gravity anomalies by spherical harmonic analysis using EGM2008, the latest earth geopotential model. The results show that first, the development of gravimetric geoid model based on airborne gravimetry is needed and second, about 200 GPS surveying data at national benchmark is needed. It is concluded that it is the most reasonable way to develop the hybrid geoid model through fitting geometric geoid by GPS/leveling data to gravimetric geoid. Also, it is proposed that four band spherical Fast fourier transformation(FFT) method for evaluation of Stokes integration and remove and restore technique using EGM2008 and SRTM for calculation of gravimetric geoid model and least square collocation algorithm for calculation of hybrid geoid model.

Geoid Models Referred to the Bessel Ellipsoid of South Korea (벳셀타원체 기준의 남한지역 지오이드 모델(KGM95))

  • 이영진
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.13 no.2
    • /
    • pp.125-133
    • /
    • 1995
  • The geoidal heights of a country may be computed from astrogedetic, gravimetric or satellite data. In this paper, the geoid models to the Bessel ellipsoid(KGM95-A) have been determined by the astrogedetic method, which is surface fitting techniques using deflections of the vertical and geoid height constraints. Transformation equations and the gravimetric geocentric geoid(KGM93-C) were applied to obtain the geoid height referred to the Tokyo Datum of the Korean geodetic network, the comparison of the astrogedetic results and discussions of the geoid information were added.

  • PDF

Evaluation of Ultra-high and High Degree Geopotential Models for Improving the KGEOID98

  • Yun, Hong-Sic
    • Korean Journal of Geomatics
    • /
    • v.2 no.1
    • /
    • pp.7-15
    • /
    • 2002
  • Recent development of ultra-high and high degree Earth geopotential model opens new avenues to determine the Earth gravity field through spectral techniques to a very high accuracy and resolution. However, due to data availability, quality, and type, the performance of these new EGMs needs to be validated in regional or local scale geoid modeling. For establishing the best reference surface of geoid determination, recent geopotential models are evaluated using GPS/Leveling-derived geometric geoid and the Korean gravimetrical GEOID (KGEOID98) developed by National Geography Institute in 1998. Graphical and statistical comparisons are made for EGM96, GFZ97, PGM2000A and GPM98A models. The mean and standard deviation of difference between geometric height and geoid undulation calculated from GFZ97 are $1.9\pm{46.7}\;cm$. It is shown that the GFZ97 and the GPM98A models are better than the others in the Korean peninsula because the GFZ97 has a smaller bias. It means that the KGEOID98 needs some improvement using the GFZ97 instead of EGM96.

  • PDF

Precise Geoid Model for Korea from Gravity and GPS Data

  • Choi, Kwang-Sun;Won, Ji-Hoon;Shin, Young-Hong
    • Journal of the Korean Geophysical Society
    • /
    • v.9 no.3
    • /
    • pp.181-188
    • /
    • 2006
  • The data, methodology, and the resulting accurate gravimetric geoid model for the Korean Peninsula (latitude from 32˚ N to 40˚ N and longitude from 124˚ E to 131˚ E) are presented in this study. The types of used data were a high degree geopotential model (the EGM96 spherical harmonic coefficient set), a set of 12,615 land gravity observations, 1,056,075 shipborne gravity observations, and KMS2002 gravity anomalies from satellite altimetry. The remove-restore technique was successfully applied to combining the above mentioned data sets using up to degree and order 112 of the EGM96 coefficient. The residual geoid was calculated with residual Free-Air anomaly values using the spherical Stokes' formula with a 37-km integration cap radius. The geoid model was referred to WGS84 geodetic system and was tested using a set of GPS/levelling geoid undulations. The absolute accuracy is 0.132 m and some improvement compared to the PNU95 geoid model was found.

  • PDF

Comparison between FFT and LSC Method for the Residual Geoid Height Modeling in Korea (한국의 잔여지오이드고 모델링을 위한 FFT 및 LSC 방법 비교)

  • Lee, Dong Ha;Yun, Hong Sic;Suh, Yong Cheol
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.2D
    • /
    • pp.323-334
    • /
    • 2011
  • In this study, we performed the residual geoid modeling using the FFT and LSC methods in context of application of R-R (Remove and Restore) technique as a general technique for gravimetric geoid model in order to propose the effective way of geoid determination in Korea. For this, a number of data compiled for residual geoid modeling by the multi-band spherical FFT method with Stoke's formula and LSC method as known as statistical method. The geometric geoidal heights obtained from 503 GPS/Levelling data were used for inducing the various elements and proper computation process which should be considered for improving the accuracy of residual geoid modeling. Finally, we statistically compared the results of residual geoid heights between FFT and LSC methods and reviewed then the proper way of residual geoid modeling to the region of Korea. As the results of comparison, LSC method is not suitable for residual geoid modeling in Korea due to the noise and lack of gravity observations and the effects of local characteristics, while FFT method by applying Stokes' integral with proper cap size and modified kernel which provides the better accuracy of residual geoid heights up to 10 cm more than those of LSC method.

Development of Precise Geoid Model in Jeju Island (제주도 지역의 정밀지오이드 모델 개발)

  • Lee, Dong-Ha;We, Gwang-Jae;Huang, He;Yun, Hong-Sic
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.26 no.1
    • /
    • pp.51-61
    • /
    • 2008
  • The determination of precise geoid model for the Jeju island is needed to minimize the effect of different vertical datums. This study describes the development of gravimetric geoid model referred to GRS80 reference surface for the area of Jeju island. We used ECM96 up to degree and order 360 as a reference model and added the terrain and the residual gravity effects to the reference model. After then 17 GPS/Levelling data were used to correct the difference between the GPS/Levelling-derived geoid heights and gravimetric geoid heights. The least square collocation was applied to derive the correction and the grid values. The final precise geoid model(Jeju_GEOID07) that consist of $0.75'{\times}1'$(about $1.4km{\times}1.5km)$ grid interval was obtained in the region of $33^{\circ}{\sim}33.8^{\circ}N$ and $125.8^{\circ}{\sim}127.2^{\circ}E$. Concerning this works, the precise geoid for the Korean peninsula should be determined by integrating the different geoid developed for the peninsula and Jeju island. It is also need to integrate the vertical datum using long-term tide and GPS observations.

An Analysis of DEM and Gravity Effect for Precision Geoid Determination in Korea (우리나라 정밀지오이드 구축을 위한 지형자료 및 중력자료 영향 분석)

  • Lee, Bo-Mi;Lee, Ji-Sun;Kwon, Jay-Hyoun;Lee, Yong-Wook
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.26 no.5
    • /
    • pp.519-527
    • /
    • 2008
  • The basic elements in precise geoid determination are the gravity and topographic data with reliable quality and distribution. In this study, the effect of the gravity and topographic data on the precision of the geoid are analyzed through simulations in which the quality and distribution of the data are artificially controlled. It was found that the distribution of the topographic data has more effect on the precision of geoid than the quality of the it. This leads to the conclusion that the SRTM (Shuttle Radar Topography Mission) DTM (Digital Terrain Model) with resolution of 90m is qualified as a topographic data in geoid determination. In the experiments with gravity data, on the other hand, the aliasing effect caused by the low data density caused large errors in geoid. It was found that the more gravity data especially in north-eastern mountainous area is needed for precise geoid determination in Korea.