• Title/Summary/Keyword: geodetic surveying

Search Result 169, Processing Time 0.019 seconds

Development of Reference Epoch Adjustment Model for Correction of GPS Precise Point Positioning Results (GPS 정밀단독측위 성과의 보정을 위한 기준시점 조정모델 개발)

  • Sung, Woo-Jin;Yun, Hong-Sik;Hwang, Jin-Sang;Cho, Jae-Myoung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.30 no.3
    • /
    • pp.249-258
    • /
    • 2012
  • In this study, the epoch adjustment model was developed to correct GPS precise point positioning result to be suitable for the current geodetic datum of Korea which is tied at past epoch statically. The model is based on the formula describing crustal movements, and the formula is composed of several parameters. To determine the parameters, the data gathered at 14 permanent GPS stations for 10 years, from 2000 to 2011, were processed using GIPSY-OASIS II. It was possible to determine the position of permanent GPS stations with an error range of 16mm and the position of check points with an error range of 12mm by appling the model to GPS precise point positioning result. It is considered that more precise model could be calculated by using GPS data of more permanent GPS stations.

A study on the Geoid of the GPS/Leveling and Geopotential Model (GPS/Leveling과 지오포텐셜 모델 지오이드 고찰)

  • 고인세;조진동
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.18 no.2
    • /
    • pp.129-134
    • /
    • 2000
  • To utilize the survey method using the geodetic satellite GPS, we tried to analysis the GPS/Leveling and the geopotential model of the 26 GPS observation points including 23 BM and 3 triangulation points with approximately 16-km interval selected from the Andong geographic map with a scale of 1:250,000. The average deviations of the geopotential model calculated from the results of analysis to the GPS/Leveling and the previously developed geopotential models(EGM96, OSU91A, and KGEOID), are 0.493 m, 0.277 m, and 0.195 m, respectively and RMS errors are $\pm$0.299 m, $\pm$0.152 m, and $\pm$ 0.133 m. The general trend of geoid undulations, however, shows an increasing pattern to the NW-SE direction. It has been also reported that the geoid undulation related with topographic-highs and geoid-highs although very poor relationship is shown in this area.

  • PDF

A Study on 3D-Transformation of Krazovsky Coordinate System (Krassovsky 타원체 좌표의 3차원 변환에 대한 연구)

  • 김감래;전호원;현민호
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.19 no.2
    • /
    • pp.117-123
    • /
    • 2001
  • Requiring topographic information of map due to retaining russia map, which needed accuracy analysis of russia map and relation between its and south korea's map. In order to obtain exact location information from the map which has different reference datum. We have to operate coordinate transformation between maps applied different ellipsoid. In this paper, in order to evaluate accuracy between two maps applied different ellipsoid, it has studied theory of map projection and coordinate transformation. Then, select each point which can be recognized on the two maps for accuracy evaluation. After obtaining coordinate values for each point of same area, it is evaluated accuracy each geodetic coordinate and each TM coordinate. As a result of this study, the maps which have different reference datum could be used if the exact origin shift could be obtained and applied.

  • PDF

The Optimized Integration of Single-baseline GPS Solutions for Network-based Kinematic Positioning (네트워크 기반 키너매틱 위치결정을 위한 단일기선 GPS해의 최적 결합)

  • Choi, Yun-Soo;Bae, Tae-Suk;Lee, Jong-Ki;Kwon, Jay-Hyoun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.25 no.3
    • /
    • pp.207-213
    • /
    • 2007
  • For several years, although the demand of high accuracy kinematic positing using multiple bases has been increased, most of the commercial GPS processing softwares can provide the single-baseline solutions only. Thus, we studied the methods to improve the accuracy of the kinematic positioning using the network configuration based on the several single-baseline solutions. As discussed in this study, the positioning accuracy as well as the network stability is improved by introducing the geodetic network adjustment theories into the kinematic positioning application. Three different methods to remove the rank-deficiency, RLESS, BLIMPBE and SCLESS, are analyzed in this study. The 3D RMS error has been improved from 3.5cm(max) to 2.1cm using the network-based kinematic positioning, and it is desired to choose BLIMPBE and SCLESS depending on the accuracy of the base stations.

Analysis of Site Environment at Permanent GPS Stations Operated by National Geographic Information Institute (국토지리정보원 GPS 상시관측소 관측환경 분석)

  • Park, Kwan-Dong;Kim, Hye-In;Won, Ji-Hye
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.25 no.4
    • /
    • pp.337-345
    • /
    • 2007
  • National Geographic Information Institute has installed the first permanent Global Positioning System (GPS) station SUWN in 1995 and, as of today, the number of sites is 14. In this study, we visited all the 14 stations and determined if the site mount and antenna configuration conforms to the international site guidelines published by International GNSS Service and National Geodetic Survey. The environment around each station was also checked for the possibility of causing positioning errors. In addition, the GPS data quality was evaluated using the quality-checking program called TEQC. As a result of site visits, we found that low stations (TABK, CHJU, KWNJ, and WNJU) have unfavorable environment and TEQC results validated it. TEQC results also showed that the GPS receiver change during years 2005-2006 reduced the multipath errors and the number of cycle slips at every station.

Effectiveness Analysis According to the Affiliation of Linear SOC Projects and Cadastral Resurvey Project (선형 SOC 사업과 지적재조사측량의 연계에 따른 효과 분석)

  • Lee, Byoungkil;Yoon, Jong Sung;Son, Jong Young
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.32 no.spc4_2
    • /
    • pp.393-400
    • /
    • 2014
  • "Master Plan of Cadastral Resurvey Project" aims to put the governmental budget of 1.3 trillion Won into the cadastral resurvey project until 2030 that reflects the preliminary feasibility study, conducted by government at 2012. The cadastral Resurvey, which takes 78.8% of the expenses in the project, has to take an critical role for earning the most effective results from the project. The cadastral confirmation surveying take up almost 13% of the project and is controlled under the areal SOC(Social Overhead Capital) projects in current "Master Plan of Cadastral Resurvey Project". Also, the affiliations of cadastral resurvey and linear SOC projects are expected to bring advanced results, although those are excluded from cadastral confirmation surveying. For linear SOC projects, the land division survey is conducted by using boundary stakes in boundary survey, while the cadastral resurvey is conducted within the SOC project area, after the completion of the project. In this study, we could conclude that cadastral resurvey results with the world geodetic system from boundary survey at the point of land division could be produced without the duplication of land division and cadastral resurvey. As a result, the expected benefits are 73,877 parcels and 4,078 million won, annually.

The Values and Uses of Korea's Geographic Center as Locational Resource (지리적 위치자원으로서의 국토정중앙의 가치와 활용 방안)

  • Kim, Chang-Hwan
    • Journal of the Korean association of regional geographers
    • /
    • v.14 no.5
    • /
    • pp.453-465
    • /
    • 2008
  • The purpose of this study is to introduce the concept of the geographic center, to examine its value as locational resource, and to consider the way of its practical uses. Geographic center is the intersection point where central meridian and central parallel cross each other. This geographic locational resources can be used as data for locational education in geographic education, the standards for antipodes, datum points for geodetic surveying, a factor of place marketing, etc. This study can be a model for a geographic discovery that is to seek many geographic resources being scattered about our country.

  • PDF

A Study on Geoid Model Development Method in Philipphines (필리핀 지오이드모델의 개발방안 연구)

  • Lee, Suk-Bae;Pena, Bonifasio Dela
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.27 no.6
    • /
    • pp.699-710
    • /
    • 2009
  • If a country has her geoid model, it could be determine accurate orthometric height because the geoid model could provide continuous equi-gravity potential surface. And it is possible to improve the coordinates accuracy of national control points through geodetic network adjustment considering geoidal heights. This study aims to find the best way to develop geoid model in Philippines which have similar topographic conditions as like Malaysia and Indonesia in Eastsouth asia. So, in this study, it is surveyed the general theories of geoid determination and development cases of geoid model in Asia and it is computed that the geoidal heights and gravity anomalies by spherical harmonic analysis using EGM2008, the latest earth geopotential model. The results show that first, the development of gravimetric geoid model based on airborne gravimetry is needed and second, about 200 GPS surveying data at national benchmark is needed. It is concluded that it is the most reasonable way to develop the hybrid geoid model through fitting geometric geoid by GPS/leveling data to gravimetric geoid. Also, it is proposed that four band spherical Fast fourier transformation(FFT) method for evaluation of Stokes integration and remove and restore technique using EGM2008 and SRTM for calculation of gravimetric geoid model and least square collocation algorithm for calculation of hybrid geoid model.

TLS (Total Least-Squares) within Gauss-Helmert Model: 3D Planar Fitting and Helmert Transformation of Geodetic Reference Frames (가우스-헬머트 모델 전최소제곱: 평면방정식과 측지좌표계 변환)

  • Bae, Tae-Suk;Hong, Chang-Ki;Lim, Soo-Hyeon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.40 no.4
    • /
    • pp.315-324
    • /
    • 2022
  • The conventional LESS (LEast-Squares Solution) is calculated under the assumption that there is no errors in independent variables. However, the coordinates of a point, either from traditional ground surveying such as slant distances, horizontal and/or vertical angles, or GNSS (Global Navigation Satellite System) positioning, cannot be determined independently (and the components are correlated each other). Therefore, the TLS (Total Least Squares) adjustment should be applied for all applications related to the coordinates. Many approaches were suggested in order to solve this problem, resulting in equivalent solutions except some restrictions. In this study, we calculated the normal vector of the 3D plane determined by the trace of the VLBI targets based on TLS within GHM (Gauss-Helmert Model). Another numerical test was conducted for the estimation of the Helmert transformation parameters. Since the errors in the horizontal components are very small compared to the radius of the circle, the final estimates are almost identical. However, the estimated variance components are significantly reduced as well as show a different characteristic depending on the target location. The Helmert transformation parameters are estimated more precisely compared to the conventional LESS case. Furthermore, the residuals can be predicted on both reference frames with much smaller magnitude (in absolute sense).

Effects of Earth's Atmosphere on Terrestrial Reference Frame : A Review (지구 대기가 지구 기준계에 미치는 영향 : 기존 모델 분석)

  • Na, Sung-Ho;Cho, Jungho
    • Geophysics and Geophysical Exploration
    • /
    • v.18 no.3
    • /
    • pp.133-142
    • /
    • 2015
  • Displacement of the Earth's surface due to atmospheric loading has been recognized since a century years ago, and its accurate estimation is required in present day geodesy and surveying, particularly in space geodesy. Atmospheric load deformation in continental region can readily be calculated with the given atmospheric pressure field and the load Green's function, and, in near coastal area, approximate model is used for the calculation. The changes in the Earth's atmospheric circulation and the seasonal variation of atmospheric pressure on two hemispheres of the Earth are the each main causes of variation of the Earth's spin angular velocity and polar motion respectively. Wind and atmospheric pressure do the major role in other periodic and non-periodic perturbations of the positions in the Earth's reference frame and variations in the Earth's spin rotational state. In this reviewing study, the developments of related theories and models are summarized along with brief description of phenomena, and the geodetic perturbing effects of a hypothetical typhoon passing Korea are shown as an example. Finally related existing problems and further necessary studies are discussed in general.