• Title/Summary/Keyword: genotype environment interaction

Search Result 57, Processing Time 0.03 seconds

Quality Changes in Tomato Fruits Caused by Genotype and Environment Interactions (재배환경과 유전형의 상호작용에 따른 토마토 과실 품질 변화)

  • Park, Minwoo;Chung, Yong Suk;Lee, Sanghyeob
    • Horticultural Science & Technology
    • /
    • v.35 no.3
    • /
    • pp.361-372
    • /
    • 2017
  • Bred and grown around the world, tomato (Solanum spp.) has highly valuable fruits containings various anti-oxidants such as lycopene, flavonoids, glutamine, and ${\beta}-carotene$. Several studies have explored, way in which to enhance the growth, management and quality of tomato, we focus on the management of growth for yield rather than quality. The expression of superior agronomic traits depends on where cultivars are grown. We evaluated 10 cultivars grown in three environment for their lycopene. HTL3137 ($70.48mg{\cdot}kg^{-1}$), which was grown in Yoeju in spring/summer, contained the highest lycopene content, while HTL10256 ($20.9mg{\cdot}kg^{-1}$), which was grown in Suwon in spring/summer, contain the least lycopene.Correlations between color components and lycopene content varied according to growing location and season. In spring/summer-grown tomatoes from Suwon, no significant correlation was observed between any color component (redness [R], greenness [G], blueness [B], luminosity, $L^*$, $a^*$, $b^*$, hue and chroma) and lycopene content. A correlation was observed between B and lycopene content in tomatoes grown in Yeoju during the same season. In tomatoes grown in Yeoju in fall/winter, significant correlations were found between lycopene content and G, luminosity, $L^*$, and hue. Variance in interactions between genotype, environment, and genotype ${\times}$ environment (G ${\times}$ E) using Minimum Norm Quadratic Unbiased Estimate (MINQUE) analysis indicated that lycopene content depends on genotype (51.33%), environment (49.13%), and G ${\times}$ E (21.43%). However, when the Additive Main Effects and Multiplicative Interaction (AMMI) was used, the G ${\times}$ E value was highest.

Genotype $\times$ Environment Interaction of Rice Yield in Multi-location Trials (벼 재배 품종과 환경의 상호작용)

  • 양창인;양세준;정영평;최해춘;신영범
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.46 no.6
    • /
    • pp.453-458
    • /
    • 2001
  • The Rural Development Administration (RDA) of Korea now operates a system called Rice Variety Selection Tests (RVST), which are now being implemented in eight Agricultural Research and Extension Services located in eight province RVST's objective is to provide accurate yield estimates and to select well-adapted varieties to each province. Systematic evaluation of entries included in RVST is a highly important task to select the best-adapted varieties to specific location and to observe the performance of entries across a wide range of test sites within a region. The rice yield data in RVST for ordinary transplanting in Kangwon province during 1997-2000 were analyzed. The experiments were carried out in three replications of a random complete block design with eleven entries across five locations. Additive Main effects and Multiplicative Interaction (AMMI) model was employed to examine the interaction between genotype and environment (G$\times$E) in the biplot form. It was found that genotype variability was as high as 66%, followed by G$\times$E interaction variability, 21%, and variability by environment, 13%. G$\times$E interaction was partitioned into two significant (P<0.05) principal components. Pattern analysis was used for interpretation on G$\times$E interaction and adaptibility. Major determinants among the meteorological factors on G$\times$E matrix were canopy minimum temperature, minimum relative humidity, sunshine hours, precipitation and mean cloud amount. Odaebyeo, Obongbyeo and Jinbubyeo were relatively stable varieties in all the regions. Furthermore, the most adapted varieties in each region, in terms of productivity, were evaluated.

  • PDF

Genetic and Environmental Deterrents to Breeding for Disease Resistance in Dairy Cattle

  • Lin, C.Y.;Aggrey, S.E.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.9
    • /
    • pp.1247-1253
    • /
    • 2003
  • Selection for increased milk production in dairy cows has often resulted in a higher incidence of disease and thus incurred a greater health costs. Considerable interests have been shown in breeding dairy cattle for disease resistance in recent years. This paper discusses the limitations of breeding dairy cattle for genetic resistance in six parts: 1) complexity of disease resistance, 2) difficulty in estimating genetic parameters for planning breeding programs against disease, 3) undesirable relationship between production traits and disease, 4) disease as affected by recessive genes, 5) new mutation of the pathogens, and 6) variable environmental factors. The hidden problems of estimating genetic and phenotypic parameters involving disease incidence were examined in terms of categorical nature, non-independence, heterogeneity of error variance, non-randomness, and automatic relationship between disease and production traits. In light of these limitations, the prospect for increasing genetic resistance by conventional breeding methods would not be so bright as we like. Since the phenomenon of disease is the result of a joint interaction among host genotype, pathogen genotype and environment, it becomes essential to adopt an integrated approach of increasing genetic resistance of the host animals, manipulating the pathogen genotypes, developing effective vaccines and drugs, and improving the environmental conditions. The advances in DNA-based technology show considerable promise in directly manipulating host and pathogen genomes for genetic resistance and producing vaccines and drugs for prevention and medication to promote the wellbeing of the animals.

Interaction between Smoking and the STAB2 Gene in the Severity of Rheumatoid Arthritis

  • Min, Jin-Young;Min, Kyoung-Bok;Sung, Joo-Hon;Cho, Sung-Il
    • Genomics & Informatics
    • /
    • v.7 no.1
    • /
    • pp.20-25
    • /
    • 2009
  • Rheumatoid arthritis (RA) is a chronic autoimmune disorder that is characterized by inflammation of the synovial tissue and deterioration of the joint and bone. A recent study reported a potential gene-environment interaction between HLA-DR and smoking. The present study investigated whether a specific gene was related to the association between smoking and the severity of RA (rheumatoid factor levels > 20 IU/ml). We used the resources of the NARAC family collection of GAW 15 databases, and 1139 subjects with RF>20 IU/ml were included in the current analysis. The linkage panel contained 5858 SNP markers, and 5744 SNPs passed quality control criteria. Linear regression analyses, using PLINK software and generalized estimating equation regression models, were used to test for associations between the SNPs and the severity of RA according to smoking groups. Two major findings were established. First, the severity of RA in smokers was associated with rs703618 (p=$6{\times}10^{-5}$), which lies in the intronic region of the stabilin 2 (STAB2) gene on chromosome 12. Second, there were significant differences in the levels of RF between 'ever smokers' and 'never smokers' according to the rs703618 genotype (G/G, A/G, A/A). We investigated whether a specific gene acts as a mediator between smoking and the severity of RA and found that the STAB2 gene could affect this relationship. Our finding indicates that smoking may mediate RA severity by affecting the expression level of a specific gene.

MDM2 and TP53 Polymorphisms as Predictive Markers for Head and Neck Cancer in Northeast Indian Population: Effect of Gene-Gene and Gene-Environment Interactions

  • Bhowmik, Aditi;Das, Sambuddha;Bhattacharjee, Abhinandan;Choudhury, Biswadeep;Naiding, Momota;Deka, Sujata;Ghosh, Sankar Kumar;Choudhury, Yashmin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.14
    • /
    • pp.5767-5772
    • /
    • 2015
  • Background: Polymorphisms in the MDM2 309 (T>G) and TP53 72 (G>C) genes are reported to increase the susceptibility to head and neck cancer (HNC) in various populations. The risk for HNC is also strongly associated with etiologic habits such as smoking, alcohol consumption and/or chewing of betel quid (BQ). In a case-control study, we investigated the significance of the above polymorphisms alone, and upon interaction with one another as well as with various etiologic habits in determining HNC risk in a Northeast Indian population. Materials and Methods: Genotyping at 309 MDM2 and 72 TP53 in 122 HNC patients and 86 cancer free healthy controls was performed by PCR using allele specific primers, and the results were confirmed by DNA sequencing. Results: Individuals with the GG mutant allele of MDM2 showed a higher risk for HNC in comparison to those with the TT wild type allele (OR=1.9, 95%CI: 1.1-3.3) (p=0.022). The risk was further increased in females by ~4-fold (OR=4.6, 95% CI: 1.1-19.4) (P=0.04). TP53 polymorphism did not contribute to HNC risk alone; however, interaction between the TP53 GC and MDM2 GG genotypes resulted in significant risk (OR=4.9, 95% CI: 0.2-105.1) (p=0.04). Smokers, BQ- chewers and alcohol consumers showed statistically significant and dose-dependent increase in HNC risk, irrespective of the MDM2 genotype. Conclusions: MDM2 genotype could serve as an important predictive biomarker for HNC risk in the population of Northeast India.

Evaluation of Growth and Wood Traits in E. camaldulensis and Interspecific Eucalypt Hybrid Clones Raised at Three Diverse Sites in Southern India

  • Rathinam Kamalakannan;Suraj Poreyana Ganapathy;Shri Ram Shukla;Mohan Varghese;Chandramana Easwaran Namboothiri Jayasree
    • Journal of Forest and Environmental Science
    • /
    • v.39 no.1
    • /
    • pp.27-39
    • /
    • 2023
  • Twenty-five Eucalyptus clones (14 E. camaldulensis - EC and 11 interspecific eucalypt hybrid clones - EH) grown in three contrasting sites were evaluated for the growth and few wood traits at 4 years of age. The stability, genotype-site interaction and suitability of these clones for pulp and solid wood industry sectors were studied. Growth of eucalypt clones was significantly higher at site 1 with higher rainfall, but wood density did not differ significantly from lower rainfall sites. Kraft pulp yield (KPY) decreased from sites 1 to 3 based on moisture availability, but not between two groups of clones. Volumetric shrinkage (VS) was significantly higher in EC clones at site 3 with lowest rainfall, but there was no specific trend at other two sites with maximum (site 1) and intermediate (site 2) rainfall. The mechanical traits modulus of rupture (MOR) and modulus of elasticity (MOE) were at par in sites 1 and 2, but significantly lower at the driest site 3. The growth rate had a significant positive correlation with KPY, MOR and MOE and a negative correlation with VS, but no significant impact on wood density in both groups of clones. Genotype×environment interaction (G×E) was evident in most traits due to the difference in response of clones to moisture availability. Since wood density was negatively correlated to KPY, it has to be kept at an optimum level for the profitability of pulp industry. There was no significant difference between EC and EH clones for most traits except VS at site 3. Stability of clones varied across sites in different traits, and hence clones may be selected for deployment at each site by screening for growth, followed by wood density, considering the relationship of growth and density with other traits required by pulp and solid wood industry sectors.

Environment influences on agronomic and quality traits of sorghum

  • Choe, Myeongeun;Ko, Jeeyeon;Song, Seokbo;Park, Changhwan;Kwak, Doyeon
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.210-210
    • /
    • 2017
  • Sorghum is rich source of various phytochemicals including phenolic acids that have potential to significantly impact human health. Phytochemical production may be induced by not only genotype but a number of environmental factors including temperatures and amount of sunshine. The objective of this study was to determine the effect of planting date and harvesting stage on the agronomic and quality traits of 'Donganme' grain sorghum variety developed to produce high antioxidant activity. 'Donganme' were planted in three locations at four dates from early May to early July. Each planted fractions were harvested five times 35, 40, 45, 50, 55 days after head shooting date, respectively. Significant difference existed between the growth period and the agronomic traits. The interaction effects planting date and harvesting date was significant for plant height, tiller production, grain yield and antioxidant activity, indicating that low temperature and integrated sunshine influence on that traits. The result showed that antioxidant activity production occurred when the sorghum crop was grown in late season although the yield is lower. To produce antioxidant activity from sorghum grain need to consider the relation between the yield and nutrition component simultaneously.

  • PDF

Calpain-10 SNP43 and SNP19 Polymorphisms and Colorectal Cancer: a Matched Case-control Study

  • Hu, Xiao-Qin;Yuan, Ping;Luan, Rong-Sheng;Li, Xiao-Ling;Liu, Wen-Hui;Feng, Fei;Yan, Jin;Yang, Yan-Fang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.11
    • /
    • pp.6673-6680
    • /
    • 2013
  • Objective: Insulin resistance (IR) is an established risk factor for colorectal cancer (CRC). Given that CRC and IR physiologically overlap and the calpain-10 gene (CAPN10) is a candidate for IR, we explored the association between CAPN10 and CRC risk. Methods: Blood samples of 400 case-control pairs were genotyped, and the lifestyle and dietary habits of these pairs were recorded and collected. Unconditional logistic regression (LR) was used to assess the effects of CAPN10 SNP43 and SNP19, and environmental factors. Both generalized multifactor dimensionality reduction (GMDR) and the classification and regression tree (CART) were used to test gene-environment interactions for CRC risk. Results: The GA+AA genotype of SNP43 and the Del/Ins+Ins/Ins genotype of SNP19 were marginally related to CRC risk (GA+AA: OR = 1.35, 95% CI = 0.92-1.99; Del/Ins+Ins/Ins: OR = 1.31, 95% CI = 0.84-2.04). Notably, a high-order interaction was consistently identified by GMDR and CART analyses. In GMDR, the four-factor interaction model of SNP43, SNP19, red meat consumption, and smoked meat consumption was the best model, with a maximum cross-validation consistency of 10/10 and testing balance accuracy of 0.61 (P < 0.01). In LR, subjects with high red and smoked meat consumption and two risk genotypes had a 6.17-fold CRC risk (95% CI = 2.44-15.6) relative to that of subjects with low red and smoked meat consumption and null risk genotypes. In CART, individuals with high smoked and red meat consumption, SNP19 Del/Ins+Ins/Ins, and SNP43 GA+AA had higher CRC risk (OR = 4.56, 95%CI = 1.94-10.75) than those with low smoked and red meat consumption. Conclusions: Though the single loci of CAPN10 SNP43 and SNP19 are not enough to significantly increase the CRC susceptibility, the combination of SNP43, SNP19, red meat consumption, and smoked meat consumption is associated with elevated risk.

CYP2E1 rs2031920, COMT rs4680 Polymorphisms, Cigarette Smoking, Alcohol Use and Lung Cancer Risk in a Japanese Population

  • Kakino, Kenichi;Kiyohara, Chikako;Horiuchi, Takahiko;Nakanishi, Yoichi
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.8
    • /
    • pp.4063-4070
    • /
    • 2016
  • Background: Cytochrome P450 2E1 (CYP2E1) and catechol-O-methyltransferase (COMT) genes may contribute to susceptibility to lung cancer because of their critical involvement in mechanisms of carcinogenesis. Materials and Methods: We evaluated the role of CYP2E1 rs2031920 and COMT rs4680 in a case-control study involving 462 lung cancer cases and 379 controls in Japanese. Logistic regression was used to assess adjusted odds ratios (OR) and 95% confidence intervals (CI). Multiplicative and additive interactions with cigarette smoking or alcohol use were also examined. Results: Neither CYP2E1 rs2031920 nor COMT rs4680 was associated with lung cancer risk overall. However, smokers with the CC genotype of CYP2E1 rs2031920 (OR = 3.57, 95% CI = 2.26 - 5.63) presented a higher risk of lung cancer than those with at least one T allele (OR = 2.91, 95% CI = 1.70 - 4.98) as compared to never-smokers with at least one T allele (reference). Subjects with excessive drinking and the CC genotype of CYP2E1 rs2031920 had a significantly higher risk (OR = 2.22, 95% CI =1.39 - 3.56) than appropriate drinkers with at least one T allele. A similar tendency was observed between COMT rs4680 and either smoking or drinking habits. There were no multiplicative or additive interactions between the polymorphisms and either smoking or alcohol use. Conclusions: Our findings indicate that CYP2E1 rs2031920 and COMT rs4680 are not major contributors to lung cancer risk in our Japanese population. Future studies on the genetics of lung cancer in Japanese and their environment interactions are required.

Impact of Tobacco on Glutathione S Transferase Gene Loci of Indian Ethnics

  • Senthilkumar, K.P.;Thirumurugan, Ramasamy
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.10
    • /
    • pp.5037-5042
    • /
    • 2012
  • Background: Tobacco contains agents which generate various potent DNA adducts that can cause gene mutations. Production of DNA adducts may be neutralized by glutathione S transferase (GST) along with other phase I and phase II enzyme systems. The existence of null type of GST among the population increases the susceptibility to various disorders and diseases. The present study focuses on the impact of high tobacco usage and possible null type mutation in GST loci. Methods: Genotypes of GST were detected by multiplex polymerase chain reaction in unrelated 504 volunteers of high tobacco using natives of Gujarat. Allelic frequencies were calculated using Statistical Package for Social Studies-16 software. Hardy Weinberg Equilibrium (HWE) was calculated using Chi square test. Two sided Fisher's significance test was used to compare allelic frequencies of different populations. Results: The frequency of homozygous null genotype of GSTM1 and GSTT1 were 20% (95% CI 16.7-23.9) and 35.5% (95% CI 31.4-39.9) respectively. The GSTM1 and GSTT1 null allele frequency distribution in the Gujarat population was significantly deviating from HWE. GSTT1 null frequency of Gujaratians was significantly higher and different to all reported low tobacco using Indian ethnics, while GSTM1 was not differing significantly. Conclusion: Tobacco usage significantly influences the rate of mutation and frequency of GSTT1 and M1 null types among the habituates. The rate of mutation in GSTT1 loci was an undeviating response to the dose of tobacco usage among the population. This mutational impact of tobacco on GSTT1 postulates the possible gene - environment interaction and selection of null genotype among the subjects to prone them under susceptible status for various cancers and even worst to cure the population with GSTT1 dependent drugs.