DOI QR코드

DOI QR Code

Quality Changes in Tomato Fruits Caused by Genotype and Environment Interactions

재배환경과 유전형의 상호작용에 따른 토마토 과실 품질 변화

  • Park, Minwoo (Hyundai Seed Co. Ltd) ;
  • Chung, Yong Suk (Department of Crop Science, College of Agriculture and Life Science, Chungnam National University) ;
  • Lee, Sanghyeob (Department of Biosource Engineering, College of Life Sciences, Sejong University)
  • 박민우 (농업회사법인 현대종묘(주)) ;
  • 정용석 (충남대학교 농업생명과학대학 식물자원학과) ;
  • 이상협 (세종대학교 생명과학대학 바이오 자원공학과)
  • Received : 2016.09.05
  • Accepted : 2016.11.04
  • Published : 2017.06.28

Abstract

Bred and grown around the world, tomato (Solanum spp.) has highly valuable fruits containings various anti-oxidants such as lycopene, flavonoids, glutamine, and ${\beta}-carotene$. Several studies have explored, way in which to enhance the growth, management and quality of tomato, we focus on the management of growth for yield rather than quality. The expression of superior agronomic traits depends on where cultivars are grown. We evaluated 10 cultivars grown in three environment for their lycopene. HTL3137 ($70.48mg{\cdot}kg^{-1}$), which was grown in Yoeju in spring/summer, contained the highest lycopene content, while HTL10256 ($20.9mg{\cdot}kg^{-1}$), which was grown in Suwon in spring/summer, contain the least lycopene.Correlations between color components and lycopene content varied according to growing location and season. In spring/summer-grown tomatoes from Suwon, no significant correlation was observed between any color component (redness [R], greenness [G], blueness [B], luminosity, $L^*$, $a^*$, $b^*$, hue and chroma) and lycopene content. A correlation was observed between B and lycopene content in tomatoes grown in Yeoju during the same season. In tomatoes grown in Yeoju in fall/winter, significant correlations were found between lycopene content and G, luminosity, $L^*$, and hue. Variance in interactions between genotype, environment, and genotype ${\times}$ environment (G ${\times}$ E) using Minimum Norm Quadratic Unbiased Estimate (MINQUE) analysis indicated that lycopene content depends on genotype (51.33%), environment (49.13%), and G ${\times}$ E (21.43%). However, when the Additive Main Effects and Multiplicative Interaction (AMMI) was used, the G ${\times}$ E value was highest.

토마토(Solanum spp.)는 라이코펜, 플라보노이드, 글루타민산, ${\beta}$-카로틴 등의 풍부한 항산화 물질을 많이 함유하고 있어 건강채소로서 많은 주목을 받고 있다. 또한 토마토는 세계적인 작물로서 재배법 개선과 품종개량 등에서 많은 연구가 이루어 졌으나 국내에서는 수확량에 중점을 둔 재배를 하고 있다. 따라서 우수한 형질의 특성을 가지고 있는 품종이라도 재배지역과 방법에 따라 그 특성이 제대로 나타나지 않는 경우가 많다. 이에 10점의 품종을 이용하여 품종과 환경에 따른 라이코펜의 함량을 조사하였다. 10점의 공시재료들은 2007년부터 2014년도에 이르기 까지 농업회사 법인 현대종묘(주)에서 육성한 토마토 계통 8점과 대조품종으로 Syngenta(Basel, Switzerland)의 Defnis와 University of Florida (Gainsville, FL, USA)에서 개발한 Tasti-Lee를 사용하였다. 라이코펜 함량은 여주지역의 봄에서 여름에 걸친 하우스 재배에서 HTL3137이 $70.48mg{\cdot}kg^{-1}$으로 가장 높았으며 수원지역의 봄에서 여름에 걸친 노지재배에서 HTL10256이 $20.9mg{\cdot}kg^{-1}$으로 가장 낮게 나타났다. 색 구성요소와 라이코펜 함량의 상관관계는 재배 지역별과 유전형에 차이를 보였는데 수원 지역 봄에서 여름 기간의 노지재배에서는 뚜렷한 상관관계를 찾기 힘들었으나, 여주지역의 봄에서 여름기간에 걸친 재배에서는 B의 요인이 라이코펜 함량 상관관계를 보였으며 가을에서 겨울에 걸친 재배 작형에서는 G, Luminosity, $L^*$, Hue의 요소가 토마토 과실의 라이코펜 함량에 영향을 주는 것으로 나타났다. MINQUE를 이용한 유전형, 재배환경 그리고 유전형${\times}$재배환경($genotype{\times}environment$, $G{\times}E$) 상호작용을 분석한 결과 라이코펜 함량을 좌우하는 변수는 유전형이 51.33%로 가장 많은 영향을 미쳤으며 환경변수가 49.13% 그리고 $G{\times}E$가 21.43%로 산출되었으나 AMMI을 이용한 분석에서는 $G{\times}E$가 차지하는 요인이 가장 높았으며 유전형과 환경조건이 각각 그 뒤를 따랐다.

Keywords

References

  1. Beecher GR (1998) Nutrient content of tomato and tomato products. Proc Soc Exp Biol Med 218:98-100. https://doi.org/10.3181/00379727-218-44282a
  2. Bhandari, SR, Cho, MC, Lee, JG (2016) Genotypic variation in carotenoid, ascorbic acid, total phenolic, and flavonoid contents, and antioxidant activity in selected tomato breeding lines. Hortic. Environ. Biotechnol. 57, 440-452. https://10.1007/s13580-016-0144-3
  3. Bouma J, Varallyay G, Bates NH (1998) Principal land use changes anticipated in Europe. Agric Ecosyst Environ 67:103-119. https://doi .org/10.1016/S0167-8809(97)00109-6
  4. Brandt S, Pe k Z, Baran (2006) Lycopene content and colour of ripening tomatoes as affected by environmental conditions. J Sci Food Agric 86:568-572. https://doi.org/10.1002/jsfa.2390
  5. Clinton S. K (2006) Lycopene: chemistry, biology, and implications for human health and disease. Nurition Rev. 56:35-51. https:// doi.org/10.1111/j.1753-4887.1998.tb01691.x
  6. D’Souza M, Singha S, Ingle M (1992) Lycopene concentration of tomato fruit can be estimated from chromaticity values. HortScience. 27:465-466
  7. FAO (2013) FAO Stactical Databases of Agrculture. Available via http://faostat3.fao.org/download/Q/QC/E Accessed 28 August 2016
  8. Gail H, Sofia LC (2003) Tomato-A guide to the pleasure of choosing, growing, and cooking. DK Publishing. pp. 6.
  9. Galiana-Balaguer L, Rosello S, Herrero-Martinez JM, Maquieira A, Nuez F (2001) Determination of -ascorbic acid in Lycopersicon fruits by capillary zone electrophoresis. Anal Biochem. 296:163-218. https://doi.org/10.1006/abio.2001.5297
  10. Kuti O, Konuru HB (2005) Effects of genotype and cultivation environment on lycopene content in re-ripe tomatoes. J Sci Food Agric. 85:2021-2026. https://doi.org/10.1002/jsfa.2205
  11. Mayne ST (1996) Beta-carotene, carotenoids and disease prevention in humans. FASEBJ 10:690-701 https://doi.org/10.1096/fasebj.10.7.8635686
  12. Menrad K (2003) Market and marketing of functional food in Europe. J Food Eng. 56:181-188. https://doi.org/10.1016 /S0260-8774(02)00247-9 https://doi.org/10.1016/S0260-8774(02)00247-9
  13. Miller RG (1974) The jackknife: a review. Biometrika. 61:1-15. https://doi.org/10.1093/biomet/61.1.1
  14. Radzevicius A, Karkleliene R, Viskelis P, Bobinas c, Bobinaite R, Sakalauskiene S. (2009) Tomato (Lycopersicon esculentum Mill.) fruit quality and physiological parameters at different ripening stages of Lithuanian cultivars. Agron Res. 7:S712-S718
  15. Jaymie S, Gustavo R, Itai N, Josh T, Atticus J, Audrey D, Jack H, Nancy D, Simon G et al. (2010) Tomato Analyzer Color Test User Manual Version 3. Available via http://www.oardc.ohio-state.edu/vanderknaap/files/Color_Test_3.0_Manual.pdf Accessed 28 August 2016
  16. Wayne W. Fish, Penelope Perkins-Veazie, Julie K. Collins (2002) A Quantitative Assay for Lycopene That Utilizes Reduced Volumes of Organic Solvents, Jourrnal of Food composition and Analysis. 15:309-317 https://doi.org/10.1006/jfca.2002.1069
  17. Watada A, Norris K, Worthington J, Massie D (1976) Estimation of chlorophyll and carotenoid contents of whole tomato by light absorbance technique. J. Food Sci. 41: 329-332. https://doi.org/10.1111/j.1365-2621.1976.tb00611.x
  18. Yan W, Rajcan I (2002) Biplot evaluation of test sites and trait relations of soybean in Ontario. Crop Science 42:11-20. https:// doi.org/10.2135/cropsci2002.0011
  19. Zhu J, Weir BS (1996) Diallel analysis for sex-linked and maternal effects. Theor Appl Genet. 92:1-9. https://doi.org/10.1007/BF00222944

Cited by

  1. Effect of cultivar and growing medium on the fruit quality attributes and antioxidant properties of tomato (Solanum lycopersicum L.) vol.59, pp.2, 2017, https://doi.org/10.1007/s13580-018-0026-y