• Title/Summary/Keyword: genetic profile

Search Result 330, Processing Time 0.032 seconds

Identification of Green Alga Chlorella vulgaris Isolated from Freshwater and Improvement Biodiesel Productivity via UV Irradiation

  • Gomaa, Mohamed A.;Refaat, Mohamed H.;Salim, Tamer M.;El-Sayed, Abo El-Khair B.;Bekhit, Makhlouf M.
    • Microbiology and Biotechnology Letters
    • /
    • v.47 no.3
    • /
    • pp.381-389
    • /
    • 2019
  • Chlorella vulgaris was isolated from the Nile River, Qalubia Governorate, Egypt, for possible use in biodiesel production. BG-II nutrient growth media was used for isolation and laboratory growth. Identification was performed via 18S rRNA gene amplification, followed by sequencing. The alga was exposed to UV-C (254 nm) for 15, 30, and 45 s to improve dry weight accumulation and to increase the oil production. Daily measurements of dry weight ($g{\cdot}l^{-1}$) were performed; oil content and volumetric lipid productivity were also determined. UV-C exposure led to an increase in the volumetric lipid productivity by 27, 27.3, and $32.4mg{\cdot}l^{-1}{\cdot}d^{-1}$ with 15, 30, and 45 s, respectively, as compared with the control, which resulted in $18mg{\cdot}l^{-1}{\cdot}d^{-1}$. Of the examined mutants, the one with the highest productivity was re-irradiated by UV-C (254 nm) for 15, 30, 45, and 60 s. For 15 s of exposure time, the oil content increased to 34%, while it was 31% at 30 s; further, it decreased to 22% at 45 and 60 s exposures. The fatty acid methyl ester profile was 82.22% in the first mutant at 45 s, compared with the wild strain that contained a total of 66.01% of FAs. Furthermore, the highest levels of polyunsaturated fatty acid methyl ester were observed in the mutant exposed for 45 s, and it reached 11.41%, which reduced the cetane number to 71.3.

Acceleration Optimization of a High-speed LCD Transfer Crane Using Finite Jerk (고속 LCD 이송 시스템의 진동감소를 위한 Finite Jerk 적용 가속도 최적화)

  • Chung W.J.;Song T.J.;Jung D.W.;Cho Y.D.;Bang D.J.;Yoon Y.M.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1906-1909
    • /
    • 2005
  • This paper presents the acceleration optimization of a high-speed LCD (Liquid Crystal Display) transfer system for the minimization of vibration. To reduce vibration is one of key requirements for the dynamic control of a high-speed LCD transfer system. In this paper, the concept of finite jerk (the first derivative of acceleration) has been introduced for realizing input acceleration. The profile of finite jerk has been optimized using a genetic algorithm so that vibration effect can be minimized. In order to incorporate a genetic algorithm, the dynamic model of a LCD transfer system which is realized by using the $ADAMS^{(R){$ software has been linked to the simulation system constructed by the $MATLAB^{(R)}$. The simulation results illustrated that the duration of finite jerk can be optimized so as to minimize the magnitude of vibration. It has been also shown that the acceleration optimization with finite jerk can make the high-speed motion of a LCD transfer system result in low vibration, compared with the conventional motion control with trapezoidal velocity profile.

  • PDF

Dopamine Receptor Gene (DRD1-DRD5) Expression Changes as Stress Factors Associated with Breast Cancer

  • Pornour, Majid;Ahangari, Ghasem;Hejazi, Seyed Hesam;Ahmadkhaniha, Hamid Reza;Akbari, Mohamad Esmail
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.23
    • /
    • pp.10339-10343
    • /
    • 2015
  • Breast cancer is the most common cancer among females worldwide and a most prevalent malignancy in Iranian women. Chronic stress may make an important contribution to cancer, especially in the breast. Numerous studies showed roles of neurotransmitters in the occurrence and progression of cancers which are mediated by their various types of receptors. This study was conducted to evaluate alterations in the expression profile of dopamine receptor genes in peripheral blood mononuclear cells (PBMC) as stress factors in breast cancer patients and the human breast cancer cell line (MCF-7). Peripheral blood samples were obtained from 30 patients and 30 healthy individuals. Total mRNA was extracted from PBMC and MCF-7 cells and RT-PCR was performed to confirm the presence of five dopamine receptors (DRD1-DRD5). Expression changes of dopamine receptor genes were evaluated by real time PCR. We observed that DRD2-DRD4 in PBMCs of breast cancer patients were increased compared to healthy individuals. In addition, all dopamine receptor subtypes but DRD1 were expressed in MCF-7 cells. Therefore, alterations of these receptors as stress factors should be assessed for selecting appropriate drugs such as D2-like agonists for treatment of breast cancer after performing complimentary tests. Determining the expression profile of dopamine receptor genes thus seems promising.

Genetic Diversity of Paecilomyces japonica and Cordypces militaris Strains by URP-PCR Fingerprinting (URP-PCR핵산지문에 의한 눈꽃동충하초 (Paecilomyces japonica.)와 번데기동충하초(Cordypces militaris) 유전적 다양성분석)

  • Kim, Jong-Kun;Kang, Hee-Wan
    • The Korean Journal of Mycology
    • /
    • v.39 no.3
    • /
    • pp.180-184
    • /
    • 2011
  • This study was carried out to identify the genetic characteristics among isolates of Paecilomyces spp.and Cordyceps spp. by URP-PCR analysis. Twenty URP (universal rice primer) primers of 20 mer which were designed from repetitive sequence of rice, were used for producing PCR DNA fingerprints of the mushrooms. Of them, 5 URP primers, URP2F, URP2R, URP9F, URP4R, and URP17R amplified genomic DNA of the mushrooms with polymorphic PCR patterns. On isolates of Cordyceps militaris, primers URP1F, URP2R, URP6R and URP17R produced PCR polymorphic bands of 4 types. Isolates of Cordypces sp. that are isolated from different area of Korea were identical to isolate of C. militaris, while other species of Cordypces were different to the PCR profiles. However, the URP primers did not identify the polymorphism of PCR profile on isolates of P. japonica.

Colony Age of Trichoderma azevedoi Alters the Profile of Volatile Organic Compounds and Ability to Suppress Sclerotinia sclerotiorum in Bean Plants

  • Lincon Rafael, da Silva;Leonardo Luis de Barros, Rodrigues;Amanda Silva, Botelho;Bruna Sartorio, de Castro;Paulo Henrique Pereira Costa, Muniz;Maria Carolina Blassioli, Moraes;Sueli Correa Marques, de Mello
    • The Plant Pathology Journal
    • /
    • v.39 no.1
    • /
    • pp.39-51
    • /
    • 2023
  • Common bean (Phaseolus vulgaris L.) is one of the most important crops in human food production. The occurrence of diseases, such as white mold, caused by Sclerotinia sclerotiorum can limit the production of this legume. The use of Trichoderma has become an important strategy in the suppression of this disease. The aim of the present study was to evaluate the effect of volatile organic compounds (VOCs) emitted by Trichoderma azevedoi CEN1241 in five different growth periods on the severity of white mold in common bean. The in vitro assays were carried out in double-plate and split-plate, and the in vivo assays, through the exposure of the mycelia of S. sclerotiorum to the VOCs of T. azevedoi CEN1241 and subsequent inoculation in bean plants. Chemical analysis by gas chromatography coupled to mass spectrometry detected 37 VOCs produced by T. azevedoi CEN1241, covering six major chemical classes. The profile of VOCs produced by T. azevedoi CEN1241 varied according to colony age and was shown to be related to the ability of the biocontrol agent to suppress S. sclerotiorum. T. azevedoi CEN1241 VOCs reduced the size of S. sclerotiorum lesions on bean fragments in vitro and reduced disease severity in a greenhouse. This study demonstrated in a more applied way that the mechanism of antibiosis through the production of volatile compounds exerted by Trichoderma can complement other mechanisms, such as parasitism and competition, thus contributing to a better efficiency in the control of white mold in bean plants.

THE STUDY OF OPTIMAL BUFFER ALLOCATION IN FMS USING GENETIC ALGORITHM AND SIMULATION

  • Lee, Youngkyun;Kim, Kyungsup;Park, Joonho
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2001.10a
    • /
    • pp.263-268
    • /
    • 2001
  • In this paper, we present a new heuristic algorithm fur buffer allocation in FMS (Flexible Manufacturing System). It is conducted by using a genetic algorithm and simulation. First, we model the system by using a simulation software, \"Arena\". Then, we apply a genetic algorithm to achieve an optimal solution. VBA blocks, which are kinds of add-in functions in Arena, are used to connect Arena with the genetic algorithm. The system being modeled has seven workstations, one loading/unloading station, and three AGVs (Automated Guided Vehicle). Also it contains three products, which each have their own machining order and processing times. We experimented with two kinds of buffer allocation problems with a proposed heuristic algorithm, and we will suggest a simple heuristic approach based on processing times and workloads to validate our proposed algorithm. The first experiment is to find a buffer profile to achieve the maximum throughput using a finite number of buffers. The second experiment is to find the minimum number of buffers to achieve the desired throughput. End of this paper, we compare the result of a proposed algorithm with the result of a simple buffer allocation heuristic based on processing times and workloads. We show that the proposed algorithm increase the throughput by 7.2%.t by 7.2%.

  • PDF

Genetic Variability Based on Randomly Amplified Polymorphic DNA in Mistletoe Fig (Ficus deltoidea Jack) Collected from Peninsular Malaysia

  • Bhore, Subhash Janardhan;Arneida H., Nurul;Shah, Farida Habib
    • Journal of Forest and Environmental Science
    • /
    • v.25 no.1
    • /
    • pp.57-65
    • /
    • 2009
  • Ficus deltoidea Jack is an important and popular medicinal plant species found in the Malaysia. Plants are being collected and used based on morphology and authentication to prevent adulteration is not in practice. In this study, twenty-six accessions of F. deltoidea Jack were collected from Kelantan and Terengganu states of Peninsular Malaysia to examine their genetic similarities and differences using randomly amplified polymorphic DNA (RAPD) technique. Out of 20 arbitrary primers, two primers (D-10 and D-11) were selected which produced reliable DNA polymorphism. D-10 and D-11 primers generated 138 RAPD bands ranging from 250 bp to 3000 bp. Ninety-nine of them were polymorphic loci (72%) and thirty-nine were nonpolymorphic loci (28%). A total of 56 bands with polymorphic loci were amplified with primer D-10 and analyzed by cluster analysis and UPGMA to present a dendrogram depicting the degree of genetic relationship among 26 accessions. Eight RAPD markers were sequenced to determine their identity. RAPD analysis showed the genetic diversity among 26 accessions of F. deltoidea Jack. The RAPD profile and RAPD marker sequences reported in this paper could be used in plant and/or plant material authentication. This study also suggested that RAPD can be a useful technique to study DNA polymorphism in F. deltoidea Jack.

  • PDF

Control of Feed Rate Using Neurocontroller Incorporated with Genetic Algorithm in Fed-Batch Cultivation of Scutellaria baicalensis Georgi

  • Choi, Jeong-Woo;Lee, Woochang;Cho, Jin-Man;Kim, Young-Kee;Park, Soo-Yong;Lee, Won-Hong
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.4
    • /
    • pp.687-691
    • /
    • 2002
  • To enhance the production of flavonoids [baicalin, wogonin-7-Ο-glucuronic acid (GA)], which are secondary metabolites of Scutellaria baicalensis Georgi(G.) plant cells, a multilayer perceptron control system was applied to regulate the substrate feeding in a fed-batch cultivation. The optimal profile for the substrate feeding rate in a fed-batch culture of S. baicalensis G. was determined by simulating a kinetic model using a genetic algorithm. Process variable profiles were then prepared for the construction of a multilayer perceptron controller that included massive parallelism, trainability, and fault tolerance. An error back-propagation algorithm was applied to train the multiplayer perceptron. The experimental results showed that neurocontrol incorporated with a genetic algorithm improved the flavonoid production compared with a simple fuzzy logic control system. Furthermore, the specific production yield and flavonoid productivity also increased.

Ectopic Expression of Wild Rice OgGRP Gene Encoding a Glycine Rich Cell Wall Protein Confers Resistance to Botrytis cinerea Pathogen on Arabidopsis

  • Jeon, Eun-Hee;Chung, Eun-Sook;Lee, Hye-Young;Pak, Jung-Hun;Kim, Hye-Jeong;Lee, Jai-Heon;Moon, Byung-Ju;Jeung, Ji-Ung;Shin, Sang-Hyun;Chung, Young-Soo
    • The Plant Pathology Journal
    • /
    • v.25 no.2
    • /
    • pp.193-198
    • /
    • 2009
  • A full-length cDNA of OgGRP gene encoding a glycinerich cell wall protein was isolated from wild rice (Oryza grandiglumis). Deduced amino acid sequences of OgGRP are composed of 148 amino acids (16.3 kDa), and show 85.9% homology with Osgrp-2 (Oryza sativa). RT-PCR analysis showed that RNA expression of OgGRP was regulated by defense-related signaling chemicals, such as cantharidin, endothall, jasmonic acid, wounding, or yeast extract treatment. In relation to pathogen stress, the function of OgGRP was analyzed in OgGRP over-expressing Arabidopsis thaliana. Overexpression of OgGRP in Arabidopsis contributed to moderate resistance against fungal pathogen, Botrytis cinerea, by lowering disease rate and necrosis size. In the analysis of the transgenic Arabidopsis lines to check the change of gene expression profile, induction of PR1, PR5 and PDF1.2 was confirmed. The induction seemed to be caused by the interaction of ectopic expression of OgGRP with SA-and JA-dependent signaling pathways.

A Database of Simple Sequence Repeat (SSR) Marker-Based DNA Profiles of Citrus and Related Cultivars and Germplasm (SSR Marker를 이용한 감귤속 품종 및 유전자원에 대한 DNA Profile Data Base 구축)

  • Hong, Jee-Hwa;Chae, Chi-Won;Choi, Keun-Jin;Kwon, Yong-Sham
    • Horticultural Science & Technology
    • /
    • v.34 no.1
    • /
    • pp.142-153
    • /
    • 2016
  • The present study investigated identification of cultivars through phylogenetic analysis of 108 Citrus varieties and related cultivars using simple sequence repeat (SSR) markers. Two hundred three SSR primer pairs were used to detect polymorphic markers among 8 Citrus cultivars consisting of 4 mandarins, 1 orange, 1 tangor, 1 tangelo, and 1 pumelo. Eighteen SSR primer pairs were reproducible and showed highly polymorphic alleles. These markers were applied to assess genetic variations of the 108 varieties. Each marker detected 5-14 alleles, with an average of 9.28. The polymorphism information content varied from 0.417 to 0.791 with an average of 0.706. Cluster analysis with SSR markers resulted in 13 major groups reflecting cultivar types and pedigree information. Twelve orange cultivars in the $I-1^{st}$ sub-cluster and 23 mandarin cultivars in the $II-1^{st}$ sub-cluster, respectively, were not discriminated using the SSR markers. This could be due to narrow genetic backgrounds originated through bud mutation or nucellars seedlings. The SSR profile database of Citrus cultivars will be useful as a tool for protection of plant breeders' intellectual property rights in addition to assessing genetic diversity in Citrus cultivars and germplasms.