• Title/Summary/Keyword: genetic optimization

Search Result 2,148, Processing Time 0.025 seconds

Multi-mission Scheduling Optimization of UAV Using Genetic Algorithm (유전 알고리즘을 활용한 무인기의 다중 임무 계획 최적화)

  • Park, Ji-hoon;Min, Chan-oh;Lee, Dae-woo;Chang, Woohyuck
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.26 no.2
    • /
    • pp.54-60
    • /
    • 2018
  • This paper contains the multi-mission scheduling optimization of UAV within a given operating time. Mission scheduling optimization problem is one of combinatorial optimization, and it has been shown to be NP-hard(non-deterministic polynomial-time hardness). In this problem, as the size of the problem increases, the computation time increases dramatically. So, we applied the genetic algorithm to this problem. For the application, we set the mission scenario, objective function, and constraints, and then, performed simulation with MATLAB. After 1000 case simulation, we evaluate the optimality and computing time in comparison with global optimum from MILP(Mixed Integer Linear Programming).

Structural Dynamic Optimization of Diesel Generator systems Using Genetic Algorithm(GA) (유전자 알고리즘을 이용한 선박용 디젤발전기 시스템의 동특성 해석 및 최적화)

  • 이영우;성활경
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.3
    • /
    • pp.99-105
    • /
    • 2000
  • For multi-body dynamic problems. especially coalescent eigenvalue problems with multiobjective optimization, the design sensitivity analysis is too much complicated mathematically and numerically. Therefore, this article proposes a new technique for structural dynamic modification using a mode modification and homologous structures design method with Genetic Algorithm(GA). In this work, the homologous structure of the resiliently mounted multi-body for marine diesel generator systems is studied and the problem is treated as a combinational optimization problem using the GA. In GA formulation, fitness is defined based on penalty function approach. That include homology, allowable stress and minimum weight of common plate.

  • PDF

Sloshing Reduction Optimization of Storage Tank Using Evolutionary Method (진화적 기법을 이용한 유체저장탱크의 슬로싱 저감 최적화)

  • 김현수;이영신;김승중;김영완
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.410-415
    • /
    • 2004
  • The oscillation of the fluid caused by external forces is call ed sloshing, which occurs in moving vehicles with contained liquid masses, such as trucks, railroad cars, aircraft, and liquid rocket. This sloshing effect could be a severe problem in vehicle stability and control. In this study, the optimization design technique for reduction of the sloshing using evolutionary method is suggested. Two evolutionary methods are employed, respectively the artificial neural network(ANN) and genetic algorithm. An artificial neural network is used for the analysis of sloshing and genetic algorithm is adopted as optimization algorithm. As a result of optimization design, the optimized size and location of the baffle is presented

  • PDF

AERODYNAMIC SHAPE OPTIMIZATION OF THE SUPERSONIC IMPULSE TURBINE USING CFD AND GENETIC ALGORITHM (CFD와 유전알고리즘을 이용한 초음속 충동형 터빈의 공력형상 최적화)

  • Lee E.S.
    • Journal of computational fluids engineering
    • /
    • v.10 no.2
    • /
    • pp.54-59
    • /
    • 2005
  • For the improvement of aerodynamic performance of the turbine blade in a turbopump for the liquid rocket engine, the optimization of turbine profile shape has been studied. The turbine in a turbopump in this study is a partial admission of impulse type, which has twelve nozzles and supersonic inflow. Due to the separated nozzles and supersonic expansion, the flow field becomes complicate and shows oblique shocks and flow separation. To increase the blade power, redesign ol the blade shape using CFD and optimization methods was attempted. The turbine cascade shape was represented by four design parameters. For optimization, a genetic algorithm based upon non-gradient search hue been selected as an optimizer. As a result, the final blade has about 4 percent more blade power than the initial shape.

A Study on Multiphase Optimization of Machine Tool Structures (공작기계구조물의 다단계 최적화에 관한 연구)

  • 이영우;성활경
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.42-45
    • /
    • 2002
  • In this paper, multiphase optimization of machine Tool structure is presented. The final goal is to obtain 1) light weight, 2) statically and dynamically rigid. and 3) thermally stable structure. The entire optimization process is carried out in three phases. In the first phase, multiple static optimization problem with two objective functions is treated using Pareto genetic algorithm. where two objective functions are weight of the structure and static compliance. In the second phase, maximum receptance is minimized using simple genetic algorithm. And the last phase, thermal deflection to moving heat sources is analyzed using Predictor-Corrector Method. The method is applied to a high speed line center design which takes the shape of back-column structure.

  • PDF

Structural optimization of stiffener layout for stiffened plate using hybrid GA

  • Putra, Gerry Liston;Kitamura, Mitsuru;Takezawa, Akihiro
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.2
    • /
    • pp.809-818
    • /
    • 2019
  • The current trend in shipyard industry is to reduce the weight of ships to support the reduction of CO2 emissions. In this study, the stiffened plate was optimized that is used for building most of the ship-structure. Further, this study proposed the hybrid Genetic Algorithm (GA) technique, which combines a genetic algorithm and subsequent optimization methods. The design variables included the number and type of stiffeners, stiffener spacing, and plate thickness. The number and type of stiffeners are discrete design variables that were optimized using the genetic algorithm. The stiffener spacing and plate thickness are continuous design variables that were determined by subsequent optimization. The plate deformation was classified into global and local displacement, resulting in accurate estimations of the maximum displacement. The optimization result showed that the proposed hybrid GA is effective for obtaining optimal solutions, for all the design variables.

Distributed Hybrid Genetic Algorithms for Structural Optimization (구조최적화를 위한 분산 복합 유전알고리즘)

  • 우병헌;박효선
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.10a
    • /
    • pp.203-210
    • /
    • 2002
  • The great advantages on the Genetic Algorithms(GAs) are ease of implementation, and robustness in solving a wide variety of problems, several GAs based optimization models for solving complex structural problems were proposed. However, there are two major disadvantages in GAs. The first disadvantage, implementation of GAs-based optimization is computationally too expensive for practical use in the field of structural optimization, particularly for large-scale problems. The second problem is too difficult to find proper parameter for particular problem. Therefore, in this paper, a Distributed Hybrid Genetic Algorithms(DHGAs) is developed for structural optimization on a cluster of personal computers. The algorithm is applied to the minimum weight design of steel structures.

  • PDF

A Study on the Topology Optimization of the fixed Address Type ATC frame Using a Real Number Coding Genetic Algorithm (실수코딩 유전자알고리즘을 이용한 고정번지식 ATC 프레임의 토폴로지 최적화에 관한 연구)

  • 허영진;임상헌;이춘만
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.9
    • /
    • pp.174-181
    • /
    • 2004
  • Recently, many studies have been undergoing to reduce working time in field of machine tool. There are two ways of reducing working time to reduce actual working time by heighten spindle speed and to reduce stand-by time by shortening tool exchange time. Auto tool changer belongs to latter case. Fixed address type auto tool changer can store more number of tools in small space than magazine transfer Ope and can shorten tool exchange time. This study focuses on the topology optimization to reduce the weight of the fixed address type ATC. The optimization program using a real number coding genetic algorithm is developed and is applied to the 10-bar truss optimization problem to verify the developed program. And, it is shown that the developed program gives better results than other methods. Finally, The developed program applied to optimize the fixed address type ATC.

Distributed Hybrid Genetic Algorithms for Structural Optimization (분산 복합유전알고리즘을 이용한 구조최적화)

  • 우병헌;박효선
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.16 no.4
    • /
    • pp.407-417
    • /
    • 2003
  • Enen though several GA-based optimization algorithms have been successfully applied to complex optimization problems in various engineering fields, GA-based optimization methods are computationally too expensive for practical use in the field of structural optimization, particularly for large- scale problems. Furthermore, a successful implementation of GA-based optimization algorithm requires a cumbersome and trial-and-error routine related to setting of parameters dependent on a optimization problem. Therefore, to overcome these disadvantages, a high-performance GA is developed in the form of distributed hybrid genetic algorithm for structural optimization on a cluster of personal computers. The distributed hybrid genetic algorithm proposed in this paper consist of a simple GA running on a master computer and multiple μ-GAs running on slave computers. The algorithm is implemented on a PC cluster and applied to the minimum weight design of steel structures. The results show that the computational time required for structural optimization process can be drastically reduced and the dependency on the parameters can be avoided.

A Design Of Control System Satisfying Multi-Performance Specifications Using Adaptive Genetic Algorithms (적응 유전자 알고리즘을 이용한 다수의 성능 사양을 만족하는 제어계의 설계)

  • 윤영진;원태현;이영진;이만형
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.621-624
    • /
    • 2002
  • The purpose of this paper is a study on getting proper gain set of PID controller which satisfies multi-performance specifications of the control system. The multi-objective optimization method is introduced to evaluate specifications, and the genetic algorithm is used as an optimal problem solver. To enhance the performance of genetic algorithm itself, adaptive technique is included. According to the proposed method in this paper, finding suitable gain set can be more easily accomplishable than manual gain seeking and tuning.

  • PDF