• 제목/요약/키워드: genetic networks

검색결과 550건 처리시간 0.056초

퍼지 신경망 제어기의 구조 및 매개 변수 최적화 (The Structure and Parameter Optimization of the Fuzzy-Neuro Controller)

  • 장욱;권오국;주영훈;윤태성;박진배
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1997년도 하계학술대회 논문집 B
    • /
    • pp.739-742
    • /
    • 1997
  • This paper proposes the structure and parameter optimization technique of fuzzy neural networks using genetic algorithm. Fuzzy neural network has advantages of both the fuzzy inference system and neural network. The determination of the optimal parameters and structure of the fuzzy neural networks, however, requires special efforts. To solve these problems, we propose a new learning method for optimization of fuzzy neural networks using genetic algorithm. It can optimize the structure and parameters of the entire fuzzy neural network globally. Numerical example is provided to show the advantages of the proposed method.

  • PDF

유전자 알고리즘을 사용한 퍼지-뉴럴네트워크 구조의 최적모델과 비선형공정시스템으로의 응용 (The Optimal Model of Fuzzy-Neural Network Structure using Genetic Algorithm and Its Application to Nonlinear Process System)

  • 최재호;오성권;안태천;황형수
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1996년도 추계학술대회 학술발표 논문집
    • /
    • pp.302-305
    • /
    • 1996
  • In this paper, an optimal identification method using fuzzy-neural networks is proposed for modeling of nonlinear complex systems. The proposed fuzzy-neural modeling implements system structure and parameter identification using the intelligent schemes together with optimization theory, linguistic fuzzy implication rules, and neural networks(NNs) from input and output data of processes. Inference type for this fuzzy-neural modeling is presented as simplified inference. To obtain optimal model, the learning rates and momentum coefficients of fuzz-neural networks(FNNs) and parameters of membership function are tuned using genetic algorithm(GAs). For the purpose of its application to nonlinear processes, data for route choice of traffic problems and those for activated sludge process of sewage treatment system are used for the purpose of evaluating the performance of the proposed fuzzy-neural network modeling. The show that the proposed method can produce the intelligence model w th higher accuracy than other works achieved previously.

  • PDF

Genetically Optimized Hybrid Fuzzy Neural Networks Based on Linear Fuzzy Inference Rules

  • Oh Sung-Kwun;Park Byoung-Jun;Kim Hyun-Ki
    • International Journal of Control, Automation, and Systems
    • /
    • 제3권2호
    • /
    • pp.183-194
    • /
    • 2005
  • In this study, we introduce an advanced architecture of genetically optimized Hybrid Fuzzy Neural Networks (gHFNN) and develop a comprehensive design methodology supporting their construction. A series of numeric experiments is included to illustrate the performance of the networks. The construction of gHFNN exploits fundamental technologies of Computational Intelligence (CI), namely fuzzy sets, neural networks, and genetic algorithms (GAs). The architecture of the gHFNNs results from a synergistic usage of the genetic optimization-driven hybrid system generated by combining Fuzzy Neural Networks (FNN) with Polynomial Neural Networks (PNN). In this tandem, a FNN supports the formation of the premise part of the rule-based structure of the gHFNN. The consequence part of the gHFNN is designed using PNNs. We distinguish between two types of the linear fuzzy inference rule-based FNN structures showing how this taxonomy depends upon the type of a fuzzy partition of input variables. As to the consequence part of the gHFNN, the development of the PNN dwells on two general optimization mechanisms: the structural optimization is realized via GAs whereas in case of the parametric optimization we proceed with a standard least square method-based learning. To evaluate the performance of the gHFNN, the models are experimented with a representative numerical example. A comparative analysis demonstrates that the proposed gHFNN come with higher accuracy as well as superb predictive capabilities when comparing with other neurofuzzy models.

고급 뉴로퍼지 다항식 네트워크의 해석과 설계 (The Analysis and Design of Advanced Neurofuzzy Polynomial Networks)

  • 박병준;오성권
    • 전자공학회논문지CI
    • /
    • 제39권3호
    • /
    • pp.18-31
    • /
    • 2002
  • 본 연구는 뉴로퍼지 네트워크와 다항식 뉴럴네트워크를 합성한 하이브리드 모델링 구조인 고급 뉴로퍼지 다항식 네트워크(Advanced neurofuzzy polynomial networks ; ANFPN)를 제안한다. 제안된 네트워크 구조는 높은 비선형 규칙 기반 모델로, CI(Computational Intelligence)의 기술, 즉 퍼지집합, 뉴럴네트워크, 유전자 알고리즘에 의해 설계되어진다. 뉴로퍼지 네트워크는 ANFPN 구조의 전반부를, 다항식 뉴럴네트워크는 후반부를 구성한다. ANFPN의 전반부에서, 뉴로퍼지 네트워크는 간략추론, 오류역전파 학습 규칙을 이용한다. 멤버쉽함수의 파라미터, 학습율, 모멘텀 계수는 유전자 최적화를 이용하여 조절된다. ANFPN의 후반부 구조로서 다항식 뉴럴네트워크는 학습을 통해 생성되는(전개되는) 유연한 네트워크 구조이다. 특히 다항식 뉴럴네트워크의 층과 노드 수는 고정되어 있지 않고 동적으로 생성된다. 본 연구에서는, 2가지 형태의 ANFPN 구조를 제안한다. 즉 기본 구조와 변형된 구조이다. 여기서 기본 구조와 변형된 구조는 다항식 뉴럴네트워크 구조의 각 층에서 입력변수의 수와 회귀다항식의 차수에 의존한다. 두 결합 구조의 특징 때문에 공정 시스템의 비선형적인 특성을 고려할 수 있고 보다 우수한 예측능력을 가진 좋은 출력선응을 얻을 수 있게 한다. ANFPN의 유용성과 실용성은 2개의 수치 예제를 통해 논의된다. 제안된 ANFPN은 기존의 모델보다 높은 정밀도와 예측능력을 가진 모델을 생성함을 보인다.

유전 알고리즘과 시뮬레이티드 어닐링이 적용된 적응 랜덤 신호 기반 학습에 관한 연구 (A Study on Adaptive Random Signal-Based Learning Employing Genetic Algorithms and Simulated Annealing)

  • 한창욱;박정일
    • 제어로봇시스템학회논문지
    • /
    • 제7권10호
    • /
    • pp.819-826
    • /
    • 2001
  • Genetic algorithms are becoming more popular because of their relative simplicity and robustness. Genetic algorithms are global search techniques for nonlinear optimization. However, traditional genetic algorithms, though robust, are generally not the most successful optimization algorithm on any particular domain because they are poor at hill-climbing, whereas simulated annealing has the ability of probabilistic hill-climbing. Therefore, hybridizing a genetic algorithm with other algorithms can produce better performance than using the genetic algorithm or other algorithms independently. In this paper, we propose an efficient hybrid optimization algorithm named the adaptive random signal-based learning. Random signal-based learning is similar to the reinforcement learning of neural networks. This paper describes the application of genetic algorithms and simulated annealing to a random signal-based learning in order to generate the parameters and reinforcement signal of the random signal-based learning, respectively. The validity of the proposed algorithm is confirmed by applying it to two different examples.

  • PDF

A Discrete Mathematical Model Applied to Genetic Regulation and Metabolic Networks

  • Asenjo, J.A.;Ramirez, P.;Rapaport, I.;Aracena, J.;Goles, E.;Andrews, B.A.
    • Journal of Microbiology and Biotechnology
    • /
    • 제17권3호
    • /
    • pp.496-510
    • /
    • 2007
  • This paper describes the use of a discrete mathematical model to represent the basic mechanisms of regulation of the bacteria E. coli in batch fermentation. The specific phenomena studied were the changes in metabolism and genetic regulation when the bacteria use three different carbon substrates (glucose, glycerol, and acetate). The model correctly predicts the behavior of E. coli vis-a-vis substrate mixtures. In a mixture of glucose, glycerol, and acetate, it prefers glucose, then glycerol, and finally acetate. The model included 67 nodes; 28 were genes, 20 enzymes, and 19 regulators/biochemical compounds. The model represents both the genetic regulation and metabolic networks in an integrated form, which is how they function biologically. This is one of the first attempts to include both of these networks in one model. Previously, discrete mathematical models were used only to describe genetic regulation networks. The study of the network dynamics generated 8 $(2^3)$ fixed points, one for each nutrient configuration (substrate mixture) in the medium. The fixed points of the discrete model reflect the phenotypes described. Gene expression and the patterns of the metabolic fluxes generated are described accurately. The activation of the gene regulation network depends basically on the presence of glucose and glycerol. The model predicts the behavior when mixed carbon sources are utilized as well as when there is no carbon source present. Fictitious jokers (Joker1, Joker2, and Repressor SdhC) had to be created to control 12 genes whose regulation mechanism is unknown, since glycerol and glucose do not act directly on the genes. The approach presented in this paper is particularly useful to investigate potential unknown gene regulation mechanisms; such a novel approach can also be used to describe other gene regulation situations such as the comparison between non-recombinant and recombinant yeast strain, producing recombinant proteins, presently under investigation in our group.

An Optimization of Polynomial Neural Networks using Genetic Algorithm

  • Kim, Dong-Won;Park, Jang-Hyun;Huh, Sung-Hoe;Yoon, Pil-Sang;Park, Gwi-Tae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2002년도 ICCAS
    • /
    • pp.61.3-61
    • /
    • 2002
  • $\textbullet$ Abstract $\textbullet$ Introduction $\textbullet$ Genetic Algorithm $\textbullet$ Evolutionary structure optimization of PNN $\textbullet$ Simulation result $\textbullet$ Conclusion $\textbullet$ References

  • PDF

유전자 네트워크에서 확률적 그래프 모델을 이용한 정보 네트워크 추론 (Informatics Network Representation Using Probabilistic Graphical Models of Network Genetics)

  • 나상동;박동석;윤영지
    • 한국정보통신학회논문지
    • /
    • 제10권8호
    • /
    • pp.1386-1392
    • /
    • 2006
  • 유전자 생물학 분야에서 여러 각도로 세포 간 네트워크를 입증하는 고 처리 정보공학 WWW에 응용하려는 수치학적인 표현 모델 분석 연구한다. 확률적 그래프 모델을 사용하여 데이터 네트워크로부터 생물학적 통찰력을 확률적 함수적으로 응용해 복잡한 세포 간 네트워크 보다 단순한 하부모델로 구성하여 유전자 베이스네트워크 논리를 유전자 표현 레벨로 나타낸다. 유전자 데이터로부터 확률적 그래프 모델들을 분석하여 유전자 표현 데이터를 정보 공학 네트워크 모델의 방법으로 확장 추론한다.

Aging Analysis and Reconductoring of Overhead Conductors for Radial Distribution Systems Using Genetic Algorithm

  • Legha, Mahdi Mozaffari;Mohammadi, Mohammad
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권6호
    • /
    • pp.2042-2048
    • /
    • 2014
  • In medium voltage electrical distribution networks, reforming the loss reduction is important, and in line with this, the issue of system engineering and use of proper equipment Expansion of distribution systems results in higher system losses and poor voltage regulation. Therefore, an efficient and effective distribution system has become more important. So, proper selection of conductors in the distribution system is crucial as it determines the current density and the resistance of the line. Evaluation of aging conductors for losses and costs imposed in addition to the careful planning of technical and economic networks can be identified in the network design. In this paper the use of imperialist competitive algorithm; genetic algorithm; is proposed to optimal branch conductor selection and reconstruction in radial distribution systems planning. The objective is to minimize the overall cost of annual energy losses and depreciation on the cost of conductors to improve productivity given the maximum current carrying capacity and acceptable voltage levels. Simulations are carried out on 69-bus radial distribution network using genetic algorithm approaches to show the accuracy as well as the efficiency of the proposed solution technique.