• Title/Summary/Keyword: genetic fuzzy

Search Result 784, Processing Time 0.022 seconds

The Migration Scheme in the Multi-population Genetic Algorithms using Fuzzy Logic Controller (퍼지 논리 제어를 이용한 다 개체군 유전자 알고리즘의 이주 기법)

  • 전향신;권기호
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.10a
    • /
    • pp.76-78
    • /
    • 2003
  • 다 개체군 유전자 알고리즘에서는 여러 개의 개체군을 사용하여 각 개체군을 독립적으로 진화를 시키는데, 이 논문에서는 퍼지 논리 제어를 이용하여 독립적으로 개체군을 진화시켜 집단으로 이주시키는 새로운 코딩방법을 제안한다. 이 퍼지 논리 제어는 최적화과정 동안 교배 비율과 돌연변이 비율을 적합하게 조절하여 수행하는 두 퍼지 논리 제어를 나타낸다. 제안하는 방식을 성능평가해서 기존의 방식과 비교해 보았다. 제안하는 방식이 수렴속도를 향상시킬 수 있다는 장점을 보여준다.

  • PDF

An Intelligent Management System for Evaluating Science Research Projects

  • Chen, Zhi-Yu;Chen, Shi-Quan;Wu, Jin-Pei
    • Industrial Engineering and Management Systems
    • /
    • v.4 no.1
    • /
    • pp.109-116
    • /
    • 2005
  • Proposed in this paper is an intelligent management system for evaluating science research projects based on fuzzy neural networks with genetic algorithms. This system was planned, designed and tested employing theories and approaches of software engineering. This system was then applied to evaluate science research projects of the Natural Science Foundation of Guangdong Province, People’s Republic of China. The outcome / results shows the feasibility and validity of the system and its possible application to other intelligent management systems.

Hybrid Genetic Algorithms for Solving Reentrant Flow-Shop Scheduling with Time Windows

  • Chamnanlor, Chettha;Sethanan, Kanchana;Chien, Chen-Fu;Gen, Mitsuo
    • Industrial Engineering and Management Systems
    • /
    • v.12 no.4
    • /
    • pp.306-316
    • /
    • 2013
  • The semiconductor industry has grown rapidly, and subsequently production planning problems have raised many important research issues. The reentrant flow-shop (RFS) scheduling problem with time windows constraint for harddisk devices (HDD) manufacturing is one such problem of the expanded semiconductor industry. The RFS scheduling problem with the objective of minimizing the makespan of jobs is considered. Meeting this objective is directly related to maximizing the system throughput which is the most important of HDD industry requirements. Moreover, most manufacturing systems have to handle the quality of semiconductor material. The time windows constraint in the manufacturing system must then be considered. In this paper, we propose a hybrid genetic algorithm (HGA) for improving chromosomes/offspring by checking and repairing time window constraint and improving offspring by left-shift routines as a local search algorithm to solve effectively the RFS scheduling problem with time windows constraint. Numerical experiments on several problems show that the proposed HGA approach has higher search capability to improve quality of solutions.

Cluster Analysis of 12 Chinese Native Chicken Populations Using Microsatellite Markers

  • Chen, G.H.;Wu, X.S.;Wang, D.Q.;Qin, J.;Wu, S.L.;Zhou, Q.L.;Xie, F.;Cheng, R.;Xu, Q.;Liu, B.;Zhang, X.Y.;Olowofeso, O.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.8
    • /
    • pp.1047-1052
    • /
    • 2004
  • The genomes of Chinese native chicken populations were screened using microsatellites as molecular markers. A total of, 528 individuals comprisede12 Chinese native chicken populations were typed for 7 microsatellite markers covering 5 linkage groups and genetic variations and genetic distances were also determined. In the 7 microsatellite loci, the number of alleles ranged from 2 to 7 per locus and the mean number of alleles was 4.6 per locus. By using fuzzy cluster, 12 Chinese native chicken populations were divided into three clusters. The first cluster comprised Taihe Silkies, Henan Game Chicken, Langshan Chicken, Dagu Chicken, Xiaoshan Chicken, Beijing Fatty Chicken and Luyuan Chicken. The second cluster included Chahua Chicken, Tibetan Chicken, Xianju Chicken and Baier Chicken. Gushi Chicken formed a separate cluster and demonstrated a long distance when comparing with other chicken populations.

Study on Fault Diagnostics Considering Sensor Noise and Bias of Mixed Flow Type 2-Spool Turbofan Engine using Non-Linear Gas Path Analysis Method and Genetic Algorithms (혼합배기가스형 2 스풀 터보팬 엔진의 가스경로 기법과 유전자 알고리즘 이용한 센서 노이즈 및 바이어스를 고려한 고장진단 연구)

  • Kong, Changduk;Kang, Myoungcheol;Park, Gwanglim
    • Journal of Aerospace System Engineering
    • /
    • v.7 no.1
    • /
    • pp.8-18
    • /
    • 2013
  • Recently, the advanced condition monitoring methods such as the model-based method and the artificial intelligent method have been applied to maximize the availability as well as to minimize the maintenance cost of the aircraft gas turbines. Among them the non-linear GPA(Gas Path Analysis) method and the GA(Genetic Algorithms) have lots of advantages to diagnose the engines compared to other advanced condition monitoring methods such as the linear GPA, fuzzy logic and neural networks. Therefore this work applies both the non-linear GPA and the GA to diagnose AE3007 turbofan engine for an aircraft, and in case of having sensor noise and bias it is confirmed that the GA is better than the GPA through the comparison of two methods.

Rank-based Control of Mutation Probability for Genetic Algorithms

  • Jung, Sung-Hoon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.10 no.2
    • /
    • pp.146-151
    • /
    • 2010
  • This paper proposes a rank-based control method of mutation probability for improving the performances of genetic algorithms (GAs). In order to improve the performances of GAs, GAs should not fall into premature convergence phenomena and should also be able to easily get out of the phenomena when GAs fall into the phenomena without destroying good individuals. For this, it is important to keep diversity of individuals and to keep good individuals. If a method for keeping diversity, however, is not elaborately devised, then good individuals are also destroyed. We should devise a method that keeps diversity of individuals and also keeps good individuals at the same time. To achieve these two objectives, we introduce a rank-based control method of mutation probability in this paper. We set high mutation probabilities to lowly ranked individuals not to fall into premature convergence phenomena by keeping diversity and low mutation probabilities to highly ranked individuals not to destroy good individuals. We experimented our method with typical four function optimization problems in order to measure the performances of our method. It was found from extensive experiments that the proposed rank-based control method could accelerate the GAs considerably.

Optimal Placement of Measurement Using GAs in Harmonic State Estimation of Power System (전력시스템 고조파 상태 춘정에서 GA를 미용한 최적 측정위치 선정)

  • 정형환;왕용필;박희철;안병철
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.52 no.8
    • /
    • pp.471-480
    • /
    • 2003
  • The design of a measurement system to perform Harmonic State Estimation (HSE) is a very complex problem. Among the reasons for its complexity are the system size, conflicting requirements of estimator accuracy, reliability in the presence of transducer noise and data communication failures, adaptability to change in the network topology and cost minimization. In particular, the number of harmonic instruments available is always limited. Therefore, a systematic procedure is needed to design the optimal placement of measurement points. This paper presents a new HSE algorithm which is based on an optimal placement of measurement points using Genetic Algorithms (GAs) which is widely used in areas such as: optimization of the objective function, learning of neural networks, tuning of fuzzy membership functions, machine learning, system identification and control. This HSE has been applied to the Simulation Test Power System for the validation of the new HSE algorithm. The study results have indicated an economical and effective method for optimal placement of measurement points using Genetic Algorithms (GAs) in the Harmonic State Estimation (HSE).

On Developing The Intellingent contro System of a Robot Manupulator by Fussion of Fuzzy Logic and Neural Network (퍼지논리와 신경망 융합에 의한 로보트매니퓰레이터의 지능형제어 시스템 개발)

  • 김용호;전홍태
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.5 no.1
    • /
    • pp.52-64
    • /
    • 1995
  • Robot manipulator is a highly nonlinear-time varying system. Therefore, a lot of control theory has been applied to the system. Robot manipulator has two types of control; one is path planning, another is path tracking. In this paper, we select the path tracking, and for this purpose, propose the intelligent control¬ler which is combined with fuzzy logic and neural network. The fuzzy logic provides an inference morphorlogy that enables approximate human reasoning to apply to knowledge-based systems, and also provides a mathematical strength to capture the uncertainties associated with human cognitive processes like thinking and reasoning. Based on this fuzzy logic, the fuzzy logic controller(FLC) provides a means of converhng a linguistic control strategy based on expert knowledge into automahc control strategy. But the construction of rule-base for a nonlinear hme-varying system such as robot, becomes much more com¬plicated because of model uncertainty and parameter variations. To cope with these problems, a auto-tuning method of the fuzzy rule-base is required. In this paper, the GA-based Fuzzy-Neural control system combining Fuzzy-Neural control theory with the genetic algorithm(GA), that is known to be very effective in the optimization problem, will be proposed. The effectiveness of the proposed control system will be demonstrated by computer simulations using a two degree of freedom robot manipulator.

  • PDF

A New Approach to Solve the TSP using an Improved Genetic Algorithm

  • Gao, Qian;Cho, Young-Im;Xi, Su Mei
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.11 no.4
    • /
    • pp.217-222
    • /
    • 2011
  • Genetic algorithms are one of the most important methods used to solve the Traveling Salesman Problem. Therefore, many researchers have tried to improve the Genetic Algorithm by using different methods and operations in order to find the optimal solution within reasonable time. This paper intends to find a new approach that adopts an improved genetic algorithm to solve the Traveling Salesman Problem, and compare with the well known heuristic method, namely, Kohonen Self-Organizing Map by using different data sets of symmetric TSP from TSPLIB. In order to improve the search process for the optimal solution, the proposed approach consists of three strategies: two separate tour segments sets, the improved crossover operator, and the improved mutation operator. The two separate tour segments sets are construction heuristic which produces tour of the first generation with low cost. The improved crossover operator finds the candidate fine tour segments in parents and preserves them for descendants. The mutation operator is an operator which can optimize a chromosome with mutation successfully by altering the mutation probability dynamically. The two improved operators can be used to avoid the premature convergence. Simulation experiments are executed to investigate the quality of the solution and convergence speed by using a representative set of test problems taken from TSPLIB. The results of a comparison between the new approach using the improved genetic algorithm and the Kohonen Self-Organizing Map show that the new approach yields better results for problems up to 200 cities.

Genetic Algorithm Based Routing Method for Efficient Data Transmission for Reliable Data Transmission in Sensor Networks (센서 네트워크에서 데이터 전송 보장을 위한 유전자 알고리즘 기반의 라우팅 방법)

  • Kim, Jin-Myoung;Cho, Tae-Ho
    • Journal of the Korea Society for Simulation
    • /
    • v.16 no.3
    • /
    • pp.49-56
    • /
    • 2007
  • There are many application areas of wireless sensor networks, such as combat field surveillance, terrorist tracking and highway traffic monitoring. These applications collect sensed data from sensor nodes to monitor events in the territory of interest. One of the important issues in these applications is the existence of the radio-jamming zone between source nodes and the base station. Depending on the routing protocol the transmission of the sensed data may not be delivered to the base station. To solve this problem we propose a genetic algorithm based routing method for reliable transmission while considering the balanced energy depletion of the sensor nodes. The genetic algorithm finds an efficient routing path by considering the radio-jamming zone, energy consumption needed fur data transmission and average remaining energy level. The fitness function employed in genetic algorithm is implemented by applying the fuzzy logic. In simulation, our proposed method is compared with LEACH and Hierarchical PEGASIS. The simulation results show that the proposed method is efficient in both the energy consumption and success ratio of delivery.

  • PDF