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Abstract

This paper proposes a rank-based control method of mutation probability for improving the performances of genetic algo-
rithms (GAs). In order to improve the performances of GAs, GAs should not fall into premature convergence phenomena
and should also be able to easily get out of the phenomena when GAs fall into the phenomena without destroying good
individuals. For this, it is important to keep diversity of individuals and to keep good individuals. If a method for keeping
diversity, however, is not elaborately devised, then good individuals are also destroyed. We should devise a method that
keeps diversity of individuals and also keeps good individuals at the same time. To achieve these two objectives, we
introduce a rank-based control method of mutation probability in this paper. We set high mutation probabilities to lowly
ranked individuals not to fall into premature convergence phenomena by keeping diversity and low mutation probabilities
to highly ranked individuals not to destroy good individuals. We experimented our method with typical four function
optimization problems in order to measure the performances of our method. It was found from extensive experiments that
the proposed rank-based control method could accelerate the GAs considerably.
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1. Introduction

Genetic Algorithms(GAs) have been applied to so
many scientific and engineering problems especially for
optimization problems [1–11]. As the number of applica-
tion increases, the performances of GAs are also more and
more important. One of the fatal problems of GAs is the
premature convergence problem [1, 2, 4, 5, 8–10, 12, 13]. If
GAs fall into premature convergence phenomena that most
individuals are located within local optimum areas, their
performances are significantly degraded [7, 8, 10, 14–17].
Crossover operations can not help GAs get out of the phe-
nomena because they can make offsprings only near the
local optimum areas and mutation operations can not also
provide a solution because the mutation probability is very
low. If we set the mutation probability to a high value, then
it will help GAs escape the local optimum areas but GAs
can not approach to the global optimum because they act
like a random search.

In order to deal with this dilemma, various parame-
ter control methods have been introduced [7, 10, 14, 15, 17–
21]. These methods can be classified into three categories:
deterministic methods, adaptive methods, and self-adaptive
methods. Deterministic methods are to adjust the parame-
ters using deterministic equations without considering the
search process such as the fitness of individuals or distri-

bution of individuals. In adaptive methods, the parame-
ters are changed according to the fitness of individuals or
distribution of individuals. The control parameters are en-
coded into the chromosomes as a part of chromosomes and
evolved at the same time in self-adaptive methods. Deter-
ministic methods are simple, but not effective because they
don’t care the search process and self-adaptive methods
are somewhat effective, but they are considerably complex
than the adaptive methods and result in sometimes mak-
ing the GAs degrade. Adaptive methods are simple and
effective, but additional parameters should be carefully se-
lected. If not, the performances are sometimes degraded.
Most existing adaptive methods have employed the fitness
of individuals for control the mutation probability. Since
the fitness has various ranges according to the optimized
functions, additional parameters are necessary. If the pa-
rameters are inadequately set, then the performances are
not good.

In this paper, we introduce a new control method of
mutation probability based on the ranks, not fitness of in-
dividuals. In order to keep diversity of individuals and to
keep good individuals, we set high mutation probabilities
to lowly ranked individuals and low mutation probabilities
to highly ranked individuals at every generations. The best
individual has zero mutation probability and the worst in-
dividual has the highest mutation probability. In order to
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measure the performances of our algorithm, we extensively
experimented our method with typical four function opti-
mization problems under various parameters. From these
experiments we found that our method was superior to the
existing GAs. Our method can be easily employed to many
types of existing GAs to increase their performances with-
out many modifications.

This paper is organized as follows. Section 2 de-
scribes previous control methods and our rank-based con-
trol method of mutation probability. Experimental results
and discussion are provided in section 3. We conclude our
paper in section 4.

2. Rank-based Mutation Probability Control

This section first introduces the premature convergence
problem and previous works for control of mutation prob-
abilities not to fall into premature convergence and next
describes our rank-based mutation control method. Al-
though the other methods to solve the premature conver-
gence problems exist, we only focus on the control meth-
ods of mutation probability.

2.1 Premature Convergence Problem
Premature convergence is the problem that relatively

good individuals within local optimum areas at initial gen-
erations are selected as parents and repeatedly regenerated
with small modifications, as a result do not approach global
optimum areas [1, 2, 4, 5, 8–10, 12, 13, 20, 21]. If GAs fall
into premature convergence phenomena, then it is very dif-
ficult for individuals to get out of the local optimum areas
[7, 8, 10, 14–17]. Under the premature convergence, most
individuals are very similar each other because they are lo-
cated nearly within local optimum areas. Crossover opera-
tions of GAs can not provide a lot of affects to get out the
problem because offsprings after crossover operations are
very similar to their parents. Whereas mutation operations
can change the individuals very much, so it helps GAs get
out of local optima. But it is not possible because the muta-
tion probability is generally very low, typically or less
than that. If we set the mutation probability to a high value
to overcome this, then GAs are hard to approach global
optima because most building blocks are also destroyed.
Actually GAs act as a random search as the mutation prob-
ability increases. It is important to keep the diversity not
to fall into premature convergences, but it is also important
to keep good individuals. If we use a constant mutation
probability as the original GA, this is a dilemma because
we cannot set the mutation probability to low values and
also cannot set to high values. From this, control methods
of mutation probability during run have been introduced
[2, 8–10, 12, 13, 20, 21].

2.2 Previous Works

Existing methods can be classified into three cate-
gories: deterministic methods, adaptive methods, and self-
adaptive methods. One of the simple deterministic methods
is introduced by Ho et al. [17]. As we already mentioned
above, premature convergence occurs at initial generations.
From this fact, they employed a very simple equation as
follows.

where is the mutation probability, is the number of
generation, and is a user setting generation. If ,
then the and the is continuously decreased
as the generation goes, and if , then the .
This method is very simple, so computationally effective,
but its performance is not good because they don’t care the
search situation how individuals are converged into local
optimum areas.

From this observation, adaptive methods have been in-
troduced [2, 8–10, 13]. Srinivas et al. [2] proposed a con-
trol method of mutation probability using some measures
of fitness as:

where and are the user selected parameters and
are the fitness of an individual, average fit-

ness, and maximum fitness, respectively. When GAs fall
into premature convergence, the average fitness will be
closed to the maximum fitness and as a result, is
increased. If a good individual with good fitness closed to
maximum fitness , then the becomes small, other-
wise the is large. Even if the becomes to high when
an individual has low fitness, it can not be enough to get out
of the premature convergence. For this, they introduced the
parameter . The individuals with low fitness than the av-
erage fitness can be strongly mutated by . Unlike the first
method, this method showed relatively good performances
because they used a measure of premature convergence us-
ing fitness. Since this method used fitness as the measure of
premature convergence, the variation is large according
to the optimized functions. This is one of disadvantage of
this method.

Another adaptive method relatively recently introduced
used another measure of premature convergence [21]. They
first calculated all distances between individuals as follows.

where the is the distance between individuals and
, is the first gene of individual and so on, and is



the number of genes. Using this distance, the diversity
can be obtained as follows.

where the is a threshold value user selects and is the
number of genes. From this equation, we can know the
diversity of individuals. If GAs fall into premature con-
vergence, then the diversity will be small. With this
equation, the mutation probability is controlled as follows.

where is the constant mutation probability. If all indi-
viduals are same, then the diversity becomes to zero
and . If is large, then the becomes to
small. Since this method directly measured the diversity
using all individuals, a lot of computation is neces-
sary especially for the large cases. This is a main draw-
back of this method.

In self-adaptive methods, the mutation probability is
also encoded into chromosomes as part of chromosomes.
When an individual is mutated, then the encoded muta-
tion probability is applied. This method is based on the
assumption that if the mutation probability is proper, then
the offsprings are good and alive at next generation. This
method is somewhat complex and since the quality of off-
springs does not depend on only the mutation, so the good
offsprings alive don’t have always good mutation probabil-
ity.

In this paper, we introduce rank-based control method
of mutation probability. Our method is simple, but effective
in the viewpoints of computation and measure of premature
convergence.

2.3 Proposed Rank-based Control Method
In order to control mutation probability based on ranks

of individuals, we first evaluate ranks of individuals and
then calculate new mutation probability of each individual
according to its rank. Algorithm 1 shows the GAs with
rank-based mutation probability control.

Algorithm 1 Proposed Genetic Algorithm
// : time //
// : population size //
// : constant original mutation probability //
// : mutation probability of th individual //
// : mutation scale factor //
// : rank of th individual //
// : populations //

1 t 0
2 initialize
3 evaluate
4 while (not termination-condition)
5 do
6 t t + 1

7 select from
8 recombine
9 do crossover
10 evaluate (*)
11 rank (*)
12 calculate mutation probability (*)
13 for to
14
15 end for
16 do mutation with instead of (*)
17 evaluate
18 end
In algorithm 1, (*) indicates additional operations for rank-
based mutation probability control. Except for those, the
others are the same as the original GA. After the crossover
operation, evaluation should first be done in order to decide
ranks of individuals and then individuals are ranked using
their fitness. After that, new mutation probability of each
individual is calculated with the original mutation probabil-
ity , the mutation scale factor , and the rank of the indi-
vidual . Since the rank is provided from zero to , the
new mutation probability is scaled up from to . If

, then the new probabilities of the highest ranked indi-
vidual, the middle ranked individual, and the lowest ranked
individual becomes , , , respectively. According
to the mutation scale factor , the mutation probability is
scaled up.

From this rank-based control of mutation probability,
we can keep the diversity of individuals not to fall into pre-
mature convergence by the strong mutation of lowly ranked
individuals and can ensure the highly ranked individuals
against destroying their good building blocks by the zero or
small mutation. Our algorithm is relatively simple than the
previous methods because our method uses ranks instead of
fitness and doesn’t need large additional parameters except
for the mutation scale factor . The mutation scale factor

is not essential to our algorithm, it can be simply set to
one because it doesn’t affect to the performances of GAs
largely. The original mutation probability is generally
set to , but it can be set by empirically or the other
parameter tuning methods.

3. Experimental Results

We experimented our algorithm with four function op-
timization problems. The four functions are given in Equa-
tion 1.

(1)
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Fig. 1 Experimental functions (a) (b) (c) (d) )

Table 1. Parameters for experiments

Parameters Values

Selection method roulette wheel selection (normalized fitness: 1000)
Crossover probability ( ) 0.6
Mutation probability ( ) 0.01, 0.05, 0.1, 0.2
Population size 20
Individual length 22 bits
Mutation scale factor ( ) 0.5, 1, 2, 4, 8, 16



Table 2. Experimental results

PGA ( )
fn. OGA DGA 0.5 1 2 4 8 16 OGA/best

0.01 57382.8 94807.8 75198.3 35448.9 19908.5 12600.6 8961.2 11107.6 6.4
0.05 32033.1 32050.2 17930.3 9144.7 16443.3 11141.5 9810.7 20141.9 3.5
0.1 49476.1 58760.6 9144.7 16443.3 11141.5 9810.7 20141.9 47161.3 5.4
0.2 55405.3 76840.2 16443.3 11141.5 9810.7 20141.9 47161.3 126467.8 5.6

0.01 88394.5 132789.9 84454.2 25273.8 9553.0 6598.0 7068.2 6927.1 13.4
0.05 36609.9 28308.7 15167.3 7406.5 10713.2 9964.4 10086.2 15324.6 4.9
0.1 45267.4 26433.0 7406.5 10713.2 9964.4 10086.2 15324.6 23622.1 6.1
0.2 53482.2 40627.1 10713.2 9964.4 10086.2 15324.6 23622.1 100911.1 5.4

0.01 204.8 215.1 264.3 120.8 113.9 72.3 41.3 39.6 5.2
0.05 96.3 230.3 175.9 23.5 26.1 76.8 74.1 89.5 4.1
0.1 249.9 259.0 23.5 26.1 76.8 74.1 89.5 211.2 10.6
0.2 141.5 252.6 26.1 76.8 74.1 89.5 211.2 348.6 5.4

0.01 1360.4 2600.5 5203.7 1533.6 679.3 615.2 427.8 330.3 4.1
0.05 1124.2 1543.9 1175.4 565.3 522.3 405.0 328.8 917.1 3.4
0.1 2383.9 3156.4 565.3 522.3 405.0 328.8 917.1 4033.5 7.3
0.2 8605.9 4449.9 522.3 405.0 328.8 917.1 4033.5 11600.6 26.2

Functions are a simple function, a Mexican hat
function, a Schafer function 1, and Schafer function 2, re-
spectively. Fig. 1 shows the input-output relations of four
functions. Function is relative simple, but the others has
a lot of local optima. We experimented with typical param-
eters as shown in Table 1. Since the roulette wheel selec-
tion uses the fitness of individuals as the measure of good-
ness, the selection pressure of good individuals depends on
the values of fitness of test functions. In order to eliminate
this effect, we normalized the fitness to 1000. That is, the
best individual in each generation has the fitness of 1000.
We tested original genetic algorithm(OGA) [1], the exist-
ing genetic algorithm using diversity (DGA) [21], and our
proposed genetic algorithm(PGA). Since the performances
of GA depends on the initial individuals, we tested 10 runs
and averaged the results. At each run, if GA finds a global
optimum, then the number of generations at that time is
recorded and these numbers are averaged. Table 2 showed
the experimental results. For simplicity, we describe only
average values without standard deviation values. In Table
2, the underbars indicate the best results on the parameters
and the numbers at the eleventh column mean the perfor-
mance ratio between OGA and the best of PGA.

As shown in Table 2, our algorithm is superior to the
OGA and DGA. The DGA showed better results than the
OGA in some cases especially for the function , but it
had worse results than the OGA for the other functions
except for only one case of with . It was
shown from this experiment that the DGA method is not
effective to increase the performances of GAs. We ex-
perimented the DGA method with the diversity threshold
value where is the individual length. The

other value of may show different results. However, the
other value also showed similar results, but
not included in the table. The mutation scale factor had
broad ranges for the best results. For the relatively simple
function , the showing best results had relatively small
values, but it had large values for the complex and multi-
modal function . Unlike the functions of and that
have only one global optimum at the center of areas, global
optimum areas of function are distributed at four areas.
We can guess from this that the strong mutation scale factor
provides good effects to the function of . Although the
results of PGA according to the mutation scale factors are
somewhat different, the differences of results are not large
and they are better than the OGA and DGA.

These results are because our algorithm can search
more broad ranges using bad individuals and focus on the
best places using good individuals. From this, our algo-
rithm rarely falls into premature convergence and easily
gets out of the premature convergence if it falls into with-
out destroying good individuals. These effects increase the
performances of our algorithm.

4. Conclusion

In this paper, we introduced a new rank-based control
method of mutation probability. This rank-based control
method makes bad individuals with low fitness to keep
the diversity of population and also makes good individ-
uals with high fitness not to be destroyed. As a result,
rank-based control of mutation probability can decrease the



probability of falling into premature convergence without
any negative side effects and results in increasing the per-
formances of GAs. It was proved with four function opti-
mization problems, our genetic algorithm was superior to
the original genetic algorithm and the previous genetic al-
gorithm using a diversity measure. Our method is very sim-
ple, so it can easily applied to the other genetic algorithms.
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