• Title/Summary/Keyword: genetic fuzzy

Search Result 784, Processing Time 0.026 seconds

Identification of Multi-Fuzzy Model by means of HCM Clustering and Genetic Algorithms (HCM 클러스터링과 유전자 알고리즘을 이용한 다중 퍼지 모델 동정)

  • 박호성;오성권
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.370-370
    • /
    • 2000
  • In this paper, we design a Multi-Fuzzy model by means of HCM clustering and genetic algorithms for a nonlinear system. In order to determine structure of the proposed Multi-Fuzzy model, HCM clustering method is used. The parameters of membership function of the Multi-Fuzzy ate identified by genetic algorithms. A aggregate performance index with a weighting factor is used to achieve a sound balance between approximation and generalization abilities of the model. We use simplified inference and linear inference as inference method of the proposed Multi-Fuzzy mode] and the standard least square method for estimating consequence parameters of the Multi-Fuzzy. Finally, we use some of numerical data to evaluate the proposed Multi-Fuzzy model and discuss about the usefulness.

  • PDF

Design of Fuzzy-Sliding Model Control with the Self Tuning Fuzzy Inference Based on Genetic Algorithm and Its Application

  • Go, Seok-Jo;Lee, Min-Cheol;Park, Min-Kyn
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.3 no.1
    • /
    • pp.58-65
    • /
    • 2001
  • This paper proposes a self tuning fuzzy inference method by the genetic algorithm in the fuzzy-sliding mode control for a robot. Using this method, the number of inference rules and the shape of membership functions are optimized without an expert in robotics. The fuzzy outputs of the consequent part are updated by the gradient descent method. And, it is guaranteed that he selected solution become the global optimal solution by optimizing the Akaikes information criterion expressing the quality of the inference rules. The trajectory tracking simulation and experiment of the polishing robot show that the optimal fuzzy inference rules are automatically selected by the genetic algorithm and the proposed fuzzy-sliding mode controller provides reliable tracking performance during the polishing process.

  • PDF

FUZZY TRANSPORTATION PROBLEM WITH ADDITIONAL CONSTRAINT IN DIFFERENT ENVIRONMENTS

  • BUVANESHWARI, T.K.;ANURADHA, D.
    • Journal of applied mathematics & informatics
    • /
    • v.40 no.5_6
    • /
    • pp.933-947
    • /
    • 2022
  • In this research, we presented the type 2 fuzzy transportation problem with additional constraints and solved by our proposed genetic algorithm model, and the results are verified using the softwares, genetic algorithm tool in Matlab and Lingo. The goal of our approach is to minimize the cost in solving a transportation problem with an additional constraint (TPAC) using the genetic algorithm (GA) based type 2 fuzzy parameter. We reduced the type 2 fuzzy set (T2FS) into a type 1 fuzzy set (T1FS) using a critical value-based reduction method (CVRM). Also, we use the centroid method (CM) to obtain the corresponding crisp value for this reduced fuzzy set. To achieve the best solution, GA is applied to TPAC in type 2 fuzzy parameters. A real-life situation is considered to illustrate the method.

Variable Structure Control with Fuzzy Reaching Law Method Using Genetic Algorithm

  • Sagong, Seong-Dae;Choi, Bong-Yeol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1430-1434
    • /
    • 2003
  • In this paper, for the fuzzy-reaching law method which has the characteristic of elimination of chattering at sliding mode as well as the characteristic of fast response at the design of variable structure controller with reaching law, optimal solutions for the determination of parameters of fuzzy membership functions by using genetic algorithm are proposed. Generally, the design of fuzzy controller has difficulties in determining the parameters of fuzzy membership functions by using a tedious trial-and-error process. To overcome these difficulties, this paper develops genetic algorithm of an optimal searching method based on genetic operation, and to verify the validity of this proposed method it is simulated through 2 link robot manipulator.

  • PDF

Genetic-fuzzy approach to model concrete shrinkage

  • da Silva, Wilson Ricardo Leal;Stemberk, Petr
    • Computers and Concrete
    • /
    • v.12 no.2
    • /
    • pp.109-129
    • /
    • 2013
  • This work presents an approach to model concrete shrinkage. The goal is to permit the concrete industry's experts to develop independent prediction models based on a reduced number of experimental data. The proposed approach combines fuzzy logic and genetic algorithm to optimize the fuzzy decision-making, thereby reducing data collection time. Such an approach was implemented for an experimental data set related to self-compacting concrete. The obtained prediction model was compared against published experimental data (not used in model development) and well-known shrinkage prediction models. The predicted results were verified by statistical analysis, which confirmed the reliability of the developed model. Although the range of application of the developed model is limited, the genetic-fuzzy approach introduced in this work proved suitable for adjusting the prediction model once additional training data are provided. This can be highly inviting for the concrete industry's experts, since they would be able to fine-tune their models depending on the boundary conditions of their production processes.

A Study on Genetic Algorithms for Automatic Fuzzy Rule Generation

  • Cho, Hyun-Joon;Wang, Bo-Hyeum
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1996.10a
    • /
    • pp.275-278
    • /
    • 1996
  • The application of genetic algorithms to fuzzy rule generation holds a great deal of promise in overcoming difficult problems in fuzzy systems design. There are some aspects to be considered when genetic algorithms are used for generating fuzzy rules. In this paper, we will present an aspect about the control surface constructed by the resultant rules. In the extensive simulations, an important observation that the rules searched by genetic algorithms are randomly scattered is made and a solution to this problem is provided by including a smoothness cost in the objective function. We apply the fuzzy rules generated by genetic algorithms to the fuzzy truck backer-upper control system and compare them with the rules made by an expert.

  • PDF

Fuzzy Rules and Membership Functions Tunning of Fuzzy Controller Applying Genetic Algorithms of Speed Control of DC Motor (퍼지 제어기의 퍼지규칙 및 멤버쉽 함수 튜닝에 유전알고리즘을 적용한 직류 모터의 속도제어)

  • Hwang, G.H.;Kim, H.S.;Park, J.H.;Hwang, C.S.;Kim, J.K.
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.1021-1023
    • /
    • 1996
  • This paper proposes a design of self-tuning fuzzy rules and membership functions based on genetic algorithms. Sub-optimal fuzzy rules and membership functions are found by using genetic algorithms. Genetic algorithms are used for tuning fuzzy rules and membership functions. A arbitrary speed trajectories are selected for the reference input of the proposed methods. Experimental results show the good performance in the DC motor control system with the self-tuning fuzzy controller based on genetic algorithms.

  • PDF

Fuzzy Logic Controller Design via Genetic Algorithm

  • Kwon, Oh-Kook;Wook Chang;Joo, Young-Hoon;Park, Jin-Bae
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.612-618
    • /
    • 1998
  • The success of a fuzzy logic control system solving any given problem critically depends on the architecture of th network. Various attempts have been made in optimizing its structure its structure using genetic algorithm automated designs. In a regular genetic algorithm , a difficulty exists which lies in the encoding of the problem by highly fit gene combinations of a fixed-length. This paper presents a new approach to structurally optimized designs of a fuzzy model. We use a messy genetic algorithm, whose main characteristics is the variable length of chromosomes. A messy genetic algorithms used to obtain structurally optimized fuzzy models. Structural optimization is regarded important before neural network based learning is switched into. We have applied the method to the exampled of a cart-pole balancing.

  • PDF

Design of Auto-Tuning Fuzzy Logic Controllers Using Hybrid Genetic Algorithms (하이브리드 유전 알고리듬을 이용한 자동 동조 퍼지 제어기의 설계)

  • Ryoo, Dong-Wan;Kwon, Jae-Cheol;Park, Seong-Wook;Seo, Bo-Hyeok
    • Proceedings of the KIEE Conference
    • /
    • 1997.11a
    • /
    • pp.126-129
    • /
    • 1997
  • This paper propose a new hybrid genetic algorithm for auto-tunig auzzy controller improving the performance. In general, fuzzy controller used pre-determine d moderate membership functions, fuzzy rules, and scaling factors, by trial and error. The presented algorithm estimates automatically the optimal values of membership functions, fuzzy rules, and scaling factors for fuzzy controller, using hybrid genetic algorithms. The object of the proposed algorithm is to promote search efficiency by overcoming a premature convergence of genetic algorithms. Hybrid genetic algorithm is based on genetic algorithm and modified gradient method. Simulation results verify the validity of the presented method.

  • PDF

A Study on Fuzzy Time Series Prediction Method using the Genetic Algorithm (유전자 알고리즘을 이용한 퍼지 시계열예측 방법에 관한 연구)

  • Jee, Hyun-Min;Chang, Woo-Seok;Lee, Sung-Mok;Kang, Hwan-Il
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.622-624
    • /
    • 2005
  • This paper proposes a time series prediction method for the nonllinear system using the fuzzy system and its genetic algorithm, At first, we obtain the optimal fuzzy membership function using the genetic algorithm. With the optimal fuzzy rules and its input differences, a better time prediction series system may be obtained. We obtain a good result for the time prediction of the electric load.

  • PDF