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Abstract

The application of genetic algorithms to fuzzy rule generation holds a great deal of promise in overcoming difficult problems in
fuzzy systems design. There are some aspects to be considered when genetic algorithms are used for generating fuzzy rules. In this
paper, we will present an aspect about the control surface constructed by the resultant rules. In the extensive simulations, an
important observation that the rules searched by genetic algorithms are randomly scattered is made and a solution to this problem is
provided by including a smoothness cost in the objective function. We apply the fuzzy rules generated by genetic algorithms to the
fuzzy truck backer-upper control system and compare them with the rules made by an expert.

1. Introduction

Mamdani and his co-workers pioneered a method of fuzzy
logic contro! [1]. The key idea behind their approach was to
replace the operator's complex tasks with machines in order to
control a class of complex systems. In this case, a control
designer captures operators’ knowledge and converts it into a
set of fuzzy control rules. The benefit of the simple design
procedure of a fuzzy controller leads to the successful
applications of a variety of engineering systems [2].

On the contrary to the successes, there is still some
reluctance in industry to adopt the fuzzy control approach.
One reason for industry reluctance is that there has been little
practical guidance on the design of fuzzy control rules [3].
Most reported applications have resorted to heuristic methods
for constructing the rule base. But it is difficult to develop a
control strategy and to calibrate control rules when complex
processes of higher dimensions are involved. Since fuzzy rule
generation is difficult and time consuming procedure, it is
required to have a systematic method for constructing
appropriate rules.

Automatic rule generation is required to overcome the
difficulty. Learning capability of neural networks and
optimization techniques such as genetic algorithms play the
central role [4,5].

Genetic algorithms (GAs) developed by Holland [6]
incorporate the features of natural evolution in computer
algorithms. In contrast that traditional optimization techniques
deal with a single candidates, GAs operate on a population of
candidates. This makes it possible for GAs to search several
areas of a solution space. GAs work through function
evaluation, not through differentiation or other such means,
and aim to optimize a user-defined function irrespective of the
form. Because of this trait, GAs do not care what type of
problem it is asked to optimize, only that it be properly coded.
Thus GAs are able to solve a wide range of problems; linear,
nonlinear, discontinuous, discrete, etc.

Several researches that use those characteristics of GAs in
fuzzy rule generation, have been reported in {7,8]. They used
the genetic-based learning as a general approach to
synthesizing fuzzy control strategies, and demonstrated that
GAs can be used effectively for generating fuzzy rules in
fuzzy control structures. Nowadays the use of GAs for
optimizing fuzzy controllers is more and more increasing.
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Investigating the rules generated by GAs, we often observe
peculiar phenomena in which the rules searched by GAs are
randomly scattered. The control surface that is constructed by
such rules is rough and irregular. However, structured
knowledge of a human expert usually provides a quite smooth
surface. Moreover the irregularity of control surface may
result in negative effects on the control inputs.

In this paper, we briefly describe a general method for
automatic fuzzy rule generation using GAs, and a solution to
the problem, that is, the irregularity of the resultant control
surface, is provided by including a smoothness cost in the
objective function. Finally, an interesting phenomenon related
to the contributions of the rules to control is introduced.

2. Automatic Rule Generation of Fuzzy
Controllers Using Genetic Algorithms

In this section, we will describe automatic rule generation
using GAs. The application of GAs to fuzzy rule generation
holds a great deal of promise in overcoming difficult
problems in fuzzy systems design, that is, design optimality.
Robustness of GAs enables them to cover a complex search
space in a relatively short period of time, while ensuring an
optimal or near optimal solution. The rules generated by GAs
are applied to the truck backer-upper control system.

2.1 Fuzzy truck Backer-Upper System

Truck backer-upper control is to make the truck arrive at
the loading dock at a right angle (¢ = 90°) and to align the
rear center of the truck (x, y) with the desired loading dock (x5
vp- The truck moves backward by some fixed distance at
every stage. Fig. 1 shows a simulated truck and loading zone.

loading dock (x;,J, )
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Fig. 1. Diagram of simulated truck and loading zone.



The controller's input variables are the truck angel ¢ and the
x-position coordinate x. The output variable is the steering-
angle signal 6. Although y-location can be considered a
variable, it is assumed in this paper that the truck is
sufficiently far from the loading dock in the y-direction so that
the y-distance can be ignored.

The equations of motion for the truck are given as

x'=x+rcos(¢'),

y'=y+rsin(¢'),

¢'=9¢+6,
where r is a fixed distance that the truck backs at each time
step (we use r = 2. in this paper), and ¢, x’, and y’ are the new
truck angle, x-location, and y-location, respectively. The
variable ranges are as follows:

0<x <100

-90<¢ <270

-30<6<30
The structure of a control rule is written as:

Ifxis L, and ¢ is L¢,, then 8 is L,

where L,, L¢, and Lg are linguistic values of x, ¢, and O,
respectively. Each fuzzy variable takes the following
linguistic values:

L,={LE, LC, CE, RC, RI},
Ly={RB,RU, RV, VE, LV, LU, LB},
Ly = {NB, NM, NS, ZE, PS, PM, PB}.

This leads us to have 35 fuzzy rules, if the rule base is
complete.

We chose the same linguistic values of the input and output
fuzzy variables as Kosko [9] for the comparison of the rules
made by GAs and the expert rules.

2.2 Algorithm Description

The basis for the software used in this paper is the Simple
Genetic Algorithm (SGA) program developed by Goldberg
[10]}. We used integer coding scheme instead of SGA's binary
coding, roulette wheel selection scheme, one-point crossover,
random mutation, and elitism.

First the number of genes are determined from the size of
the rule set. Suppose that we have a two input and single
output system. Furthermore we assume that the first input
space, the second input space, and the output space are
partitioned to /, m, and » sets, respectively. So the rule set
consists of (/ x m) fuzzy rules. GAs search for such (/ x m)
fuzzy rules so that they optimize a given objective function.
For this, we represent a fuzzy rule base as a string which
consists of (/ x m) genes. Fig. 2 shows a string example in the
case of /=3, m=7, and n= 7. The integer in a gene indicates
a specific linguistic value.

Along with encoding, another important task is to construct
objective function to be optimized. In general, the objective
function may be of the following form:

J=3aC,>

where a;'s are correction factors that adjust the dimensions or
orders of the functions Cj's. In this section, we have employed
the following cost functions:

q =\(¢/_¢)z+(x/‘x)2 ’
C, = (total time),

C; = (time from initial position to the position, x = 50,¢ =90°)-

Each cost function is designed for a particular purpose. C;
minimizes docking error, C, minimizes total time from the
initial positions to loading dock, and C3 minimizes the time
from the initial positions to docking conditional position.
Although C; seems to be redundant, it is necessary to the
stability of the controlier when the truck is located initially in
the position of which y-location is upper than that of the initial
conditions used for genetic learning.

2.3 Simulation Description

The loading zone corresponds to the plane [0, 100] x [0,
100], and (x4 yy) equals (50, 100). The initial conditions used
are shown in Table 1. These position-symmetric initial
conditions include 17 points made intentionally for the
completion of the fuzzy control rules.

We have tested the controller whether it is able to control
the truck under any initial condition. The input space x x ¢,
[10, 90] x [-90, 270] was partitioned into 29241 grids. For all
the conditions the truck was successfully docked to the
desired loading dock.

TABLE 1. Initial conditions for truck backer-upper control

Initial Conditions
x 10 40 50 60 90
-43, -45,
o | 25| 2s 45, | s | 225,
90, 157.5 90, 157.5 90,
157.5, 225 157.5,
225 225

2.4 Control Results

The fuzzy controller with the rules generated by GAs
produced successful truck backing-up trajectories starting
from any initial position. Fig. 3 shows some examples of the
fuzzy-controlled truck trajectories from different initial
positions. Table 2 summarizes a fuzzy contro! rules generated
by GAs.

35 genes

[ 2 6 3 E 1]
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Fig. 2. Encoding for GA.
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Fig. 3. Truck trajectories of the fuzzy controller for initial
positions (x, y, $): (a) (20, 20, 30), (b) (80, 30, -80).

TABLE 2. Fuzzy logic rule table for the fuzzy truck backer-
upper controller

X
LE LC CE RC RI
RB PB PB PM [ PM | NB
RU ZE PS PB PB PB
RV | NB NS PS PM PB
¢ VE NB NB ZE PB PB
LV | NB | NB | NM PS PB
LU | NB | NM PS NS NS
LB PB | NM | NM | NS NM

3. Smoothness Cost

In the rule generation using GAs, we consistently observe
peculiar phenomena in which the rules searched by GAs are
randomly scattered. The control surface that is constructed by
such rules is rough and irregular. However, structured
knowledge of a human expert usually provides a quite smooth
surface. To avoid the irregular control surface, we apply the
following cost function:

75 i+l J+!
C=220% (Ry=Ry)» X (Ry—Ry))
i=lj=1 k=i-1 m=j-1
i+ f)yrodd

To compute Cy4, each linguistic value is first converted into
an integer, e, {NB > 0. NM —> 1, ... | PB — 6}. R;
represents the integer that is assigned to the ijth cell of the rule
table. As shown in Fig. 4, the discrepancies between R;; and
its four neighboring values are computed and the summation
of them is denoted as Py. To avoid a repetitive computation,
we perform the P calculation for every other cell that is
represented by the gray cell in Fig. 4. A smaller ZP;; provides
a smoother control surface.

As was mentioned above, we have observed that the fuzzy
rules optimized by GAs form an irregular or a rough control

Fig. 4. Computation of smoothness cost.
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surface as shown in Fig 5.(a). In order to resolve this problem,
we have added smoothness cost given as C, to the objective
function used in Section 2. The fuzzy rules generated by this
objective function are shown in Table 3. Comparing Fig. 5.(a)
with Fig. 5.(b), it is easy to see that the control surface
achieved by this method is smoother than that of the previous
rulebase.
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Fig. 5. Control surfaces of (a) SGA, (b) GAiSC

TABLE 3. Fuzzy logic rule table generated by the GA
including smoothness cost

X
LE LC CE RC RI
RB PB PB PM PB PB
RU ZE PS PB PB PB
RV NB NS PS PB PB
¢ VE NB NM ZE PB PB
LV NB NB NS PS PS
LU NB NB NB NS ZE
LB NB NB NB NM NM

To understand how the objective function that includes the
smoothness cost affects the performance of controller, we
computed the total time steps required to dock the truck under
all the test initial conditions mentioned in section 2.3. As
shown in Table 4, the total time steps of the GAs including
the smoothness cost (GAISC) are the smallest of all. The rules
searched by GAs are optimized for the given initial conditions
mentioned in section 2.3, but only the 17 initial positions
cannot cover all the possible positions where the truck could
possibly be. So the rules might not be optimized for the
positions that are not trained in genetic learning. However, the
rules generated by the GAiSC backed up the truck better for
such untrained positions due to the influence of the
smoothness cost on the neighboring rules.



TABLE 4. Comparison of the control performances

Smoothness Kosko
cost included SGA designed
total time steps 1,353,954 1,405,495 1,413,340
docking failure no. 0 0 0

Another interesting phenomenon was observed related to
the smoothness cost. We applied the 17 position-symmetric
initial conditions to the three controllers, and watched over the
contribution of each rule. Fig. 6 shows the accumulated
numbers of the contributions by the rules of the two GAs and
those of Kosko. We can see that the contributions of Kosko's
and the GAiSC's rules are almost symmetric.

There are some systems whose control actions are
symmetric for a center point, such as the inverted pendulum.
The truck backer-upper system might be symmetric one, so
the control rules would be symmetric if a human expert
designed them. As can be seen in [9], the control surface of
the rules designed by an expert is symmetric and the
contributions of the rules for the position-symmetric initial
conditions are almost symmetric.

We did not design the smoothness cost to obtain such
symmetric rules, but it is an interesting phenomenon come
from the use of the smoothness cost. More theoretical details
on this issue is now under investigation.

X
LE T IC T CE ] RC T w
RB 5 0 3 2 2
RU 67 74 13 5 2
RV 3 89 71 27 2
¢ VE 2 1 446 447 2
LV 2 4 459 510 23
LU 2 7 24 89 71
LB 2 3 3 0 10
(@
X
LE | IC T CE ] RC [ R
RB 50 14 3 2 2
RU 64 74 24 5 4
RV 8 201 278 97 4
1] VE 2 227 490 266 2
v 4 97 316 239 8
U 4 5 24 74 64
LB 2 2 3 14 50
(b)
X
LE | 1c T CE ] RC T ®
RB 2 0 3 2 2
RU 74 69 12 5 4
RV 5 229 260 72 4
¢ VE 2 227 406 179 2
v 4 92 252 210 54
U 4 4 15 73 77
LB 2 1 2 0 8
(©)

Fig. 6. Contributions of the rules to control, (a) SGA , (b)
Kosko, (c) GAIiSC.
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4. Conclusions

In this paper, methods to generate rules for fuzzy
controllers using GAs have been described, and an aspect
about the control surface constructed by the resultant rules
was investigated.

Based on our extensive simulations, we found that the
irregular property of the resultant control surface is common
in GAs' rule generation. To resolve this problem, we have
introduced a smoothness cost function and have been able to
construct a fuzzy rule base that has a smoother rule surface
with a good control performance. Also we observed an
interesting phenomenon related to the symmetry of the control
rules' contributions.

Future work will attempt to develop GAs which are more
tractable for fuzzy rule generation. Since it is conjectured that
a rule surface extracted from structured knowledge of human
experts is also of a quite smooth rule surface, it is essential
that efforts be directed toward inventing genetic operators for
smoothening the rule surface.
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