The Third AFS5(1998), 613618

Fuzzy Logic Controller Design via Messy Genetic Algorithm

Oh-Kook Kwon®, Wook Chang’, Young-Hoon Joo™, Jin-Bae Park”

" Dept. of Electrical Engineering, Yonsei University, Seoul, Korea

Tel:+82-2-361-2773; Fax: +82-2-392-4230; E-mail: jbpark@bubble.yonsei.ac.kr

" Dept. of Control and Instrumental Engineering, Kunsan National University, Kunsan, Korea

Tel:+82-654-469-4706; Fax: +82-654-466-2086; E-mail: yhjoo@ks.kunsan.ac.kr

Abstract

The success of a fuzzy logic control system solving any given problem critically depends on the architecture

of the network. Various attempts have been made in optimizing its structure its structure using genetic algorithm

automated designs. In a regular genetic algorithm, a difficulty exists which lies in the encoding of the problem

by highly fit gene combinations of a fixed-length. This paper presents a new approach to structurally optimized

designs of a fuzzy model. We use a messy genetic algorithm, whose main characteristic is the variable length of

chromosomes. A messy genetic algorithm is used to obtain structurally optimized fuzzy models. Structural

optimization is regarded important before neural network based learning is switched into. We have applied the

method to the example of a cart-pole balancing.

Keywords : fuzzy control, messy genetic algorithm, automated design

1. Introduction

There is a great number of current interest in
developing the design of fuzzy logic controllers using
genetic algorithms[1][2]. The fuzzy logic controllers
are very effective for controlling complex and poorly
defined systems as it incorporates the knowledge of
human experts to achieve good control strategies.
Once the controller structure is determined, the key
elements influencing the performance of the fuzzy
logic control are the rules, scaling factors and shapes
of the membership functions[3]. The knowledge of
experts has influence upon the design of the
controllers, especially the structure of controllers.

In this paper we introduce the design method of the
fuzzy logic controllers using

messy genetic

algorithms. Our method differs from other
approaches in two special phases. Firstly, we use a
messy genetic algorithm{4] which process the
variable length strings, in contrast to standard genetic
algorithms which work with a fixed length coding
scheme. Messy Genetic Algorithms therefore allow a
flexible representation of fuzzy rules in the
controllers rulebase[5]. Secondly, a backpropagation
learning algorithm is used to tune finely the
parameters of fuzzy membership functions. In short,
after obtaining the fuzzy rules of the controller by
messy genetic algorithms then we tune finely the
fuzzy membership functions by backpropagation
learning algorithms. We demonstrate an application

of our method in teaching a controller for a cart-pole

—613~

balancing problem.

2. Messy Genetic Algorithm

Genetic algorithms are optimization methods
which are used to process a population of strings by
applying genetic operators such as selection,
recombination and mutation. Central to evolutionary
system is the idea of a population of genotypes that
are elements of high dimensional search space. More
generally, a genotype can be thought of as an
arrangement of genes, where each gene takes on
values from a suitably defined domain of values[6].
Solutions of the optimization space are coded as
fixed-length, fixed-locus strings defined over an
alphabet of alternatives at each position. Genetic
algorithms are particularly well suited for nonlinear
fitness functions with many local maxim, where the
overall fitness can not be decomposed into
contributions from single genes{5].

Genetic Algorithms have been successfully applied
to many fuzzy control applications, but not without
objections. The problem arises with the encoding of
the problem parameters. In a regular genetic
algorithm, a coded chromosome is in fixed-length
that highly fit allele combinations are formed to
obtain a convergence towards global optima.
Unfortunately the required linkage format (or the
structure of the controller to be coded) is not exactly
known and the chance of obtaining such a linkage in
a random generation of coded string is poor. Poor
linkage also means that the probability of disruption
on the building block by the genetic operators is
much higher[7]. Although inversion and reordering
methods can be used to adaptively search tight gene
ordering, these are too slow to be considered useful.

The new learning method proposed uses messy
algorithm({4,5,6]. The

genetic main differences

between a messy genetic algorithm and a regular
genetic algorithm are as follows;
® A messy genetic algorithm uses varying
string lengths
® The coding scheme considers both the allele
positions and values
® The crossover operator is replaced by two
new operators called "cut and splice"
® |t works in two phases - primordial phase and

juxtapositional phase.

2.1. Coding and Decoding

In a messy genetic algorithm, the code of integer is
more efficient than that of binary[3]. Here, one
parameter uses one coding variable and hence
dramatically reduces the memory usage. This ensures
that the string length is kept to a minimal and speeds
up evolutionary operations, while also reducing the
unnecessary inner parameter disruptions caused by

crossover and mutation.

Messy Coding Scheme for Fuzzy Rules

Enumeration of linuistic input—output variables and
terms

input 1 = {small, middle, large} input 2 = {small, middle, large}
1 1 2 3 2 1 2 3

)

output = {small, middle, large}
3] 2 3

) Formation of fuzzy clauses

clause = (variable , term)

(1, 3) input 1 is large
(2 ,1)
)

(3,2

input 2 is small

output is
middle

Figure 1. code of a fuzzy clause for a messy GA

A messy genetic algorithm is accomplished first by

defining a messy gene as an ordered pair that

identifies the gene by its name(or index) and value

—614—

and then by defining a messy chromosome as a
collection of messy genes. For example, the set (2,3)
would correspond to the second gene with value '3".
Another feature of a messy GA is that the order of the
string is irrelevant, i.e. the string {(1.3)2,1)(3,2)}
and the string {(2,1)(3,2)(1,3)} are identical. Notice
that we have not required all genes to be present, nor
have we precluded the possibility of multiple,
possibly contradictory, genes. For example, for a
three parameter problem the strings {(1,1)2,1)} and
{(1,1)2,1)3,3)(2,2)} are both valid. In the first case
the string is said to be under-specified because there
is no gene 3, and in the second case the string is said

to be over-specified because gene 2 appears twice.

2.2. Messy Operators

To handle strings of variable length, the standard
crossover operator is no longer suitable. Instead it is
replaced by two new operators, which is called cut
and splice. A schematic diagram of the cut and splice
operator is displayed figure 2. The cut operator
simply cuts the string in two parts at randomly
chosen position. The splice operator concatenates two
strings, which could have been previously cut, in a
randomly chosen order. When the cut and splice
operators are applied simultaneously to two parent
strings they alt in a similar way to the ordinary

crossover operator.

}, .
1 2
cut
O / / :’/ T
' 3 4
) 1 T
splice
LN N N
3 2

Figure 2. A messy cut and splice operation

In messy genetic algorithms the positions of cuts in
strings, which are to be joined can be chosen
independently, whereas in regular genetic algorithms
the crossover points must coincide.

The selection mechanism is as in regular genetic
algorithm but executed in primordial and
Jjuxtapositional phases. During the primordial phase,
the population is first initialized to contain the all
possible building block of a particular length,
thereafter only the selection operator is applied. This
results in enriched population of building blocks
whose combination will create optimal or near
optimal strings. And the population size is reduced by
halving the number of individuals at specified
intervals. The juxtapositional phase follows the

primordial phase, and here the genetic algorithm

invokes the cut and splice and the other operators.

3. Fuzzy Logic Control
3.1. Fuzzy Inference System

A ith fuzzy if-then rule assumes the form

R':Ifx, is Aj;and x, is A,, then y is B;

where x,, x, and y are input and output variables,
respectively. A,, A,, and B, are linguistic terms
fuzzy ~membership function

py (x,) and p, (y,) , respectively.

characterized by

We choose a Gaussian-type membership function

with a bell shaped form as follows:

u, = exp[-fff—f”l] ()

a,

where {a;, c;} are the parameters of the membership

—615—

function. In a simplified fuzzy inference, the weight
of the consequent part, , (y;), is a constant w,.

We describe formulas between input and output
values of the fuzzy inference. The output value y,,

with respect to the Ath input pattern is expressed by

M
w, = 1w)
j=1
N
#I .wl
Y = ‘:lx (3)

where M is the number of inputs, which is the
dimension of input space, N the number of fuzzy
rules, u, the fitness in the ith fuzzy rule, u, the
membership function, and w, the interconnection

weight.

tindox 2) i

e

hd *
1 layes 21ayer 3 dayer 4)ayer 5 tayer

Figure 3. The structure of fuzzy inference

3.2. Learning Algorithm

The learning algorithm is based on an adaptation of

the backpropagation learning method which mimic

fuzzy inferencing and defuzzification. The
parameters to learn are the weights, which relate to
the shape of the membership functions.
Figure 4 shows the coding of fuzzy rule base for a
sample gene.

The fine tuning procedure updates the parameters
acquired by the genetic algorithm using a back-
propagation algorithm. The general form of back-

propagation is
OE
+1}= +7- — 4
win+1] w{n]n(z) @)

where w is the weight, E the error function, and the

learning rate.

1wle base
. o - string / string string - o o
we | ea| e e
decoding)t x,isA, and x,isA,; then YisB,

Figure 4. Coding of fuzzy rules in string

4. Simulation

We apply our method to the inverted pendulum
system as a simple example of a nonlinear control
system. Figure 5 shows an inverted pendulum
system(or called a cart-pole system), which is a
classic example of a nonlinear feedback control
system. A rigid pole is attached to a cart with a hinge,
a free joint with only one degree of freedom. The cart
can move to the right or left on rails when a force is
exerted on it. This dynamic system is characterized
by two state variable.

The control goal is to find the applied force u as a

—616—

function of the state variable x:

x=[8,0] ()
where @ is the pole angle with respect to the vertical
axis and & is angular velocity of the pole. These
state variables are governed by the following

equation[8].

,_8sin 0 - cos|F +m,I(sin 0)26
4 m(cos)’

~

3 m_+m,

(6)

where g =9.8[m/sec”] for the constant of gravity,
m, =1.0{kg] for the weight of the pole,
m_ =1.0[kg] for the weight of the cart, /=0.5[m]

for the length of the pole and F is the pulling force.

ny e
<

«

Figure 5. The inverted pendulum system

Figure 6 shows the resulting structurally optimized
fuzzy inference system. Figure 7 shows the response
of the pendulum for various initial conditions outside
the ones used for optimization for the best final
solution. We can see that with the messy genetic
algorithm optimization the pendulum settles to the

vertical position very quickly.

S. Conclusion

In this paper has presented a composite method of
fuzzy logic control and messy genetic algorithms.
The main characteristic of messy genetic algorithms
is the variable length of chromosomes. A messy
genetic algorithm is used to obtain structurally
optimized fuzzy models. Structural optimization is
regarded important before neural network based
learning 1s switched into. After the structural
optimization is determined using messy genetic
algorithms, the parameters of the fuzzy membership
functions are adjusted using the backpropagation

learning algorithm. It has been successfully applied to

a cart-pole balancing problem.

angle
~._|NB | NS | Nz |PZ|PS|PB
NB NB | N8
2z
g NS NS | NZ | ps
'fg NZ NS | NZ | Pz | PZ | PS
T%” PZ | NB | NZ | NZ | PZ PB
Ps | Ns P |
PB Ps PB {

Figure 6. The optimized fuzzy rule base

Figure 7. The trajectory of the output

—617—

References

{17 C. L. Karr, "Design of a Cart Pole Balancing
Fuzzy Logic Controller Using a Genetic
Algorithm", SPIE Conference on Applicaitons of
Artificial Intelligence, Bellingham, WA, 1991,

[2] J. L. Castro, M. Delgado and F. Herrera, "A
Learning Method of Fuzzy Reasoning by Genetic
Algorithms", EUFIT 93, Vol. 2, pp. 804-809,
Aachen 1993.

{31 Y. Li and K. C. Ng, "A Uniform Approach to
Model Based Fuzzy Control System Design and
Structural optimisation”, Genetic Algorithms and
Soft Computing, F. Herrera and J. L.
Verdegay(Eds.), Physica-Verlag Series 'Studies in
Fuzziness', 8, pp. 129-151, 1996.

[4] Kalyanmoy Deb, David E. Goldberg, "mGA in C:
A Messy Genetic Algorithm in C", IIliIGAL
Report No. 91008, University of Ilinois at
Urbana-Champaign, lllinois Genetic Algorithms
Laboratory, September 1991.

[5] Frank Hoffmann, Gerd Pfister, "A New Learning
Method for the Design of Hierarchical Fuzzy
Controllers Using Messy Genetic Algorithms",
IFSA 95, July 1995,

[6] M. Chowdhury and Yun Li, "Messy Genetic
Algorithm Based New Learning Method for
Structurally Optimized Neurofuzzy Controllers",
IEEE International Conference on Industrial
Technology, Shanghai China, December 1996.

[71 L. A. Zadeh, "Fuzzy Sets", Information and
Control, Vol. 8, pp. 338-353, 1965.

[8] J.S.R. Jang, C.T. Sun and E. Mizutani, Neuro-
fuzzy and Soft
International, NJ, 1997.

[9] Y.H. Joo, H.S. Hwang, K.B. Kim and K.B. Woo,

Computing, Prentice-Hall

"Fuzzy System Modeling by Fuzzy Partition and
GA Hybrid schemes", Fuzzy Sets and Systems 86,

—618-

pp. 279-288, April 1997.

[10] Y.H. Joo, H.S. Hwang, K.B. Kim and K.B.
Woo, “Linguistic model identification for fuzzy
system”, IEE on Electronic Letters Vol. 31, pp.
330-331, February 1995.

