• 제목/요약/키워드: genetic and metabolic engineering

검색결과 99건 처리시간 0.021초

Supplementation of a Novel Microbial Biopolymer, PGB1, from New Enterobacter sp. BL-2 Delays the Deterioration of Type 2 Diabetic Mice

  • Yeo, Ji-Young;Lee, Yong-Hyun;Jeon, Seon-Min;Jung, Un-Ju;Lee, Mi-Kyung;Jung, Young-Mi;Choi, Myung-Sook
    • Journal of Microbiology and Biotechnology
    • /
    • 제17권12호
    • /
    • pp.1983-1990
    • /
    • 2007
  • Antidiabetic effects of a novel microbial biopolymer (PGB) 1 excreted from new Enterobacter sp. BL-2 were tested in the db/db mice. The animals were divided into normal control, rosiglitazone (0.005%, wt/wt), low PGB1 (0.1%, wt/wt), and high PGB1 (0.25%, wt/wt) groups. After 5 weeks, the blood glucose levels of high PGB1 and rosiglitazone supplemented groups were significantly lower than those of the control group. In hepatic glucose metabolic enzyme activities, the glucokinase activities of PGB1 supplemented groups were significantly higher than the control group, whereas the PEPCK activities were significantly lower. The plasma insulin and hepatic glycogen levels of the low and high PGB1 supplemented groups were significantly higher compared with the control group. Specifically, the insulin and glycogen increases were dose-responsive to PGB1 supplement. PGB1 supplement did not affect the IPGTT and IPITT compared with the control group; however, rosiglitazone significantly improved IPITT. High PGB1 and rosiglitazone supplementation preserved the appearance of islets and insulin-positive cells in immunohistochemical photographs of the pancreas compared with the control group. These results demonstrated that high PGB1 (0.25% in the diet) supplementation seemingly contributes to preventing the onset and progression of type 2 diabetes by stimulating insulin secretion and enhancing the hepatic glucose metabolic enzyme activities.

고온성 세균 Caldicellulosiruptor bescii를 이용한 식물성 바이오매스의 분해와 바이오에탄올의 생산 (Plant Biomass Degradation and Bioethanol Production Using Hyperthermophilic Bacterium Caldicellulosiruptor bescii)

  • 이한승
    • 생명과학회지
    • /
    • 제25권12호
    • /
    • pp.1450-1457
    • /
    • 2015
  • 화석 연료의 고갈과 환경 문제를 극복하기 위하여 식물성 바이오매스를 이용한 바이오연료의 생산이 큰 주목을 받고 있는 가운데 화학적 전처리를 하지 않은 바이오매스를 직접 분해할 수 있는 그램 양성 초호열성 세균 Caldicellulosiruptor bescii에 대한 관심이 높아지고 있다. C. bescii는 식물 세포벽을 구성하는 셀룰로스, 헤미셀룰로스 등의 분해 뿐만 아니라 세포벽을 연결시켜주는 pectin도 효율적으로 분해할 수 있는데 최근 C. bescii의 genetic tool이 개발되면서 바이오매스 분해에 관여하는 효소의 특성 규명과 아울러 대사공학적 방법으로 바이오에탄올을 생산하는 통합바이오공정(consolidated bioprocessing; CBP)의 개발이 가능케 되었다. 본 총설에서는 초고온성 세균인 C. bescii를 이용한 식물성 바이오매스의 분해와 바이오에탄올의 생산에 대한 최신 연구결과를 소개하고 향후 전망에 대해 논하고자 한다.

Chitinase 3-Like 1 (CHI3L1) Polymorphism Contributes to Visceral Obesity and Obesity-related Inflammation Induces Chi3l1 in Adipocytes

  • Kim, A Young;Jeong, Hyun Woo;Lee, Ji-Hae;Choi, Jin Kyu;Kim, Jeong Kee;Hwang, Jae Sung;Seo, Dae-Bang
    • 대한의생명과학회지
    • /
    • 제24권1호
    • /
    • pp.23-29
    • /
    • 2018
  • Abdominal obesity is considered as one of the most risky factors governing the development of metabolic diseases. Here we identify that human chitinase 3-like 1 (CHI3L1, also called YKL-40 in human) single nucleotide polymorphism (SNP), rs883125, is associated with abdominal obesity in Korean women. Korean women subjects with the rs883125 G/G or C/G genotype present higher waist-hip ratio than subjects with C/C genotype suggesting that human subjects who G nucleotide substitution at the rs883125 tended to more accumulate intra-abdominal fat at the abdominal cavity. In addition, Chi3l1 gene expression is increased in adipose tissue from obese mice and pro-inflammatory cytokine enhances Chi3l1 expression in adipocytes, indicating that Chi3l1 is greatly related with obesity and obesity-induced pro-inflammatory responses. Taken together, the minor allele of rs883125 is associated with a higher prevalence of abdominal obesity in Korean women. These findings suggest that genotype of rs883125 can be a biomarker of incident abdominal obesity and abdominal obesity-related metabolic diseases.

Cloning and Expression of Kluyveromyces fragilis $\beta$-Galactosidase Gene in Saccharomyces cerevisiae

  • Bang, Jeong-Hee;Nam, Doo-H.;Kang, Dae-Ook;Ahn, Jong-Seog;Ryu, Dewey-D.Y.
    • Journal of Microbiology and Biotechnology
    • /
    • 제5권1호
    • /
    • pp.6-13
    • /
    • 1995
  • A gene coding for the $\beta$-galactosidase (lactase) of Kluyveromyces tragilis UCD 55-55 was isolated by complementation in Escherichia coli YMC9. From the plasmid library made from Sau3A-digested chromosomal DNA, one positive clone was selected. The cloned gene for $\beta$-galactosidase was on 7.3 kilobase pair DNA fragment, and a slightly low level of $\beta$-galactosidase enzyme activity was detecied in E. coli. It was also confirmed that the cloned gene comes from K. tragilis by DNA-DNA hybridization and immunochemical blotting experiments. In order to construct a new yeast strain having the metabolic ability for lactose, the cloned gene for K. tragilis $\beta$-galactosidase was inserted in yeast vector YEp24 and YRp17, and transformed into Saccharomyces cerevisiae YNN27 and Ml-2B. The yeast transformants showed the nearly the same $\beta$-galactosidase productivity as level of K. tragilis when uninduced, but these could not utilize lactose as a sole carbon source, presumably due to the lack of lactose transport system. Nevertheless, a slightly higher ethanol productivity was achieved by these transformants than S. cerevisiae or K. tragilis, in the medium containing glucose and lactose.

  • PDF

Ginsenoside Rg2 inhibits osteoclastogenesis by downregulating the NFATc1, c-Fos, and MAPK pathways

  • Sung-Hoon Lee;Shin-Young Park;Jung Ha Kim;Nacksung Kim;Junwon Lee
    • BMB Reports
    • /
    • 제56권10호
    • /
    • pp.551-556
    • /
    • 2023
  • Ginsenosides, among the most active components of ginseng, exhibit several therapeutic effects against cancer, diabetes, and other metabolic diseases. However, the molecular mechanism underlying the anti-osteoporotic activity of ginsenoside Rg2, a major ginsenoside, has not been clearly elucidated. This study aimed to determine the effects of ginsenoside Rg2 on receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast formation. Results indicate that ginsenoside Rg2 inhibits RANKL-induced osteoclast differentiation of bone marrow macrophages (BMMs) without cytotoxicity. Pretreatment with ginsenoside Rg2 significantly reduced the RANKL-induced gene expression of c-fos and nuclear factor of activated T-cells (Nfatc1), as well as osteoclast-specific markers tartrate-resistant acid phosphatase (TRAP, Acp5) and osteoclast-associated receptor (Oscar). Moreover, RANKL-induced phosphorylation of mitogen-activated protein kinases (MAPKs) was decreased by ginsenoside Rg2 in BMM. Therefore, we suggest that ginsenoside Rg2 suppresses RANKL-induced osteoclast differentiation through the regulation of MAPK signaling-mediated osteoclast markers and could be developed as a therapeutic drug for the prevention and treatment of osteoporosis.

Morphological Engineering of Filamentous Fungi: Research Progress and Perspectives

  • Zhengwu Lu;Zhiqun Chen;Yunguo Liu;Xuexue Hua;Cuijuan Gao;Jingjing Liu
    • Journal of Microbiology and Biotechnology
    • /
    • 제34권6호
    • /
    • pp.1197-1205
    • /
    • 2024
  • Filamentous fungi are important cell factories for the production of high-value enzymes and chemicals for the food, chemical, and pharmaceutical industries. Under submerged fermentation, filamentous fungi exhibit diverse fungal morphologies that are influenced by environmental factors, which in turn affect the rheological properties and mass transfer of the fermentation system, and ultimately the synthesis of products. In this review, we first summarize the mechanisms of mycelial morphogenesis and then provide an overview of current developments in methods and strategies for morphological regulation, including physicochemical and metabolic engineering approaches. We also anticipate that rapid developments in synthetic biology and genetic manipulation tools will accelerate morphological engineering in the future.

Mechanistic Target of Rapamycin Pathway in Epileptic Disorders

  • Kim, Jang Keun;Lee, Jeong Ho
    • Journal of Korean Neurosurgical Society
    • /
    • 제62권3호
    • /
    • pp.272-287
    • /
    • 2019
  • The mechanistic target of rapamycin (mTOR) pathway coordinates the metabolic activity of eukaryotic cells through environmental signals, including nutrients, energy, growth factors, and oxygen. In the nervous system, the mTOR pathway regulates fundamental biological processes associated with neural development and neurodegeneration. Intriguingly, genes that constitute the mTOR pathway have been found to be germline and somatic mutation from patients with various epileptic disorders. Hyperactivation of the mTOR pathway due to said mutations has garnered increasing attention as culprits of these conditions : somatic mutations, in particular, in epileptic foci have recently been identified as a major genetic cause of intractable focal epilepsy, such as focal cortical dysplasia. Meanwhile, epilepsy models with aberrant activation of the mTOR pathway have helped elucidate the role of the mTOR pathway in epileptogenesis, and evidence from epilepsy models of human mutations recapitulating the features of epileptic patients has indicated that mTOR inhibitors may be of use in treating epilepsy associated with mutations in mTOR pathway genes. Here, we review recent advances in the molecular and genetic understanding of mTOR signaling in epileptic disorders. In particular, we focus on the development of and limitations to therapies targeting the mTOR pathway to treat epileptic seizures. We also discuss future perspectives on mTOR inhibition therapies and special diagnostic methods for intractable epilepsies caused by brain somatic mutations.

Targeting Acetate Kinase: Inhibitors as Potential Bacteriostatics

  • Asgari, Saeme;Shariati, Parvin;Ebrahim-Habibi, Azadeh
    • Journal of Microbiology and Biotechnology
    • /
    • 제23권11호
    • /
    • pp.1544-1553
    • /
    • 2013
  • Despite the importance of acetate kinase in the metabolism of bacteria, limited structural studies have been carried out on this enzyme. In this study, a three-dimensional structure of the Escherichia coli acetate kinase was constructed by use of molecular modeling methods. In the next stage, by considering the structure of the catalytic intermediate, trifluoroethanol (TFE) and trifluoroethyl butyrate were proposed as potential inhibitors of the enzyme. The putative binding mode of these compounds was studied with the use of a docking program, which revealed that they can fit well into the enzyme. To study the role of these potential enzyme inhibitors in the metabolic pathway of E. coli, their effects on the growth of this bacterium were studied. The results showed that growth was considerably reduced in the presence of these inhibitors. Changes in the profile of the metabolic products were studied by proton nuclear magnetic resonance spectroscopy. Remarkable changes were observed in the quantity of acetate, but other products were less altered. In this study, inhibition of growth by the two inhibitors as reflected by a change in the metabolism of E. coli suggests the potential use of these compounds (particularly TFE) as bacteriostatic agents.

Characterization of L-(+)-Lactic Acid Producing Weizmannia coagulans Strains from Tree Barks and Probiogenomic Evaluation of BKMTCR2-2

  • Jenjuiree Mahittikon;Sitanan Thitiprasert;Sitanan Thitiprasert;Naoto Tanaka;Yuh Shiwa;Nitcha Chamroensaksri;Somboon Tanasupawat
    • 한국미생물·생명공학회지
    • /
    • 제51권4호
    • /
    • pp.403-415
    • /
    • 2023
  • This study aimed to isolate and identify L-(+)-lactic acid-producing bacteria from tree barks collected in Thailand and evaluate the potential strain as probiotics. Twelve strains were isolated and characterized phenotypically and genotypically. The strains exhibited a rod-shaped morphology, high-temperature tolerance, and the ability to ferment different sugars into lactic acid. Based on 16S rRNA gene analysis, all strains were identified as belonging to Weizmannia coagulans. Among the isolated strains, BKMTCR2-2 demonstrated exceptional lactic acid production, with 96.41% optical purity, 2.33 g/l of lactic acid production, 1.44 g/g of lactic acid yield (per gram of glucose consumption), and 0.0049 g/l/h of lactic acid productivity. This strain also displayed a wide range of pH tolerance, suggesting suitability for the human gastrointestinal tract and potential probiotic applications. The whole-genome sequence of BKMTCR2-2 was assembled using a hybridization approach that combined long and short reads. The genomic analysis confirmed its identification as W. coagulans and safety assessments revealed its non-pathogenic attribute compared to type strains and commercial probiotic strains. Furthermore, this strain exhibited resilience to acidic and bile conditions, along with the presence of potential probiotic-related genes and metabolic capabilities. These findings suggest that BKMTCR2-2 holds promise as a safe and effective probiotic strain with significant lactic acid production capabilities.

Improved Production of Long-Chain Fatty Acid in Escherichia coli by an Engineering Elongation Cycle During Fatty Acid Synthesis (FAS) Through Genetic Manipulation

  • Jeon, Eunyoung;Lee, Sunhee;Lee, Seunghan;Han, Sung Ok;Yoon, Yeo Joon;Lee, Jinwon
    • Journal of Microbiology and Biotechnology
    • /
    • 제22권7호
    • /
    • pp.990-999
    • /
    • 2012
  • The microbial biosynthesis of fatty acid of lipid metabolism, which can be used as precursors for the production of fuels of chemicals from renewable carbon sources, has attracted significant attention in recent years. The regulation of fatty acid biosynthesis pathways has been mainly studied in a model prokaryote, Escherichia coli. During the recent period, global regulation of fatty acid metabolic pathways has been demonstrated in another model prokaryote, Bacillus subtilis, as well as in Streptococcus pneumonia. The goal of this study was to increase the production of long-chain fatty acids by developing recombinant E. coli strains that were improved by an elongation cycle of fatty acid synthesis (FAS). The fabB, fabG, fabZ, and fabI genes, all homologous of E. coli, were induced to improve the enzymatic activities for the purpose of overexpressing components of the elongation cycle in the FAS pathway through metabolic engineering. The ${\beta}$-oxoacyl-ACP synthase enzyme catalyzed the addition of acyl-ACP to malonyl-ACP to generate ${\beta}$-oxoacyl-ACP. The enzyme encoded by the fabG gene converted ${\beta}$-oxoacyl-ACP to ${\beta}$-hydroxyacyl-ACP, the fabZ catalyzed the dehydration of ${\beta}$-3-hydroxyacyl-ACP to trans-2-acyl-ACP, and the fabI gene converted trans-2-acyl-ACP to acyl-ACP for long-chain fatty acids. In vivo productivity of total lipids and fatty acids was analyzed to confirm the changes and effects of the inserted genes in E. coli. As a result, lipid was increased 2.16-fold higher and hexadecanoic acid was produced 2.77-fold higher in E. coli JES1030, one of the developed recombinants through this study, than those from the wild-type E. coli.