Acknowledgement
This work was supported by the Ministry of Science and ICT (MSIT), Korea, under the Innovative Human Resource Development for Local Intellectualization Support Program (IITP-2023-RS-2022-00156334) supervised by the Institute for Information & Communications Technology Planning & Evaluation (IITP), and by an NRF grant funded by the Korean Government (MSIT) (2021R1A2C1008317).
References
- Novack DV and Teitelbaum SL (2008) The osteoclast: friend or foe? Annu Rev Pathol 3, 457-484 https://doi.org/10.1146/annurev.pathmechdis.3.121806.151431
- Nakashima T, Hayashi M, Fukunaga T et al (2011) Evidence for osteocyte regulation of bone homeostasis through RANKL expression. Nat Med 17, 1231-1234 https://doi.org/10.1038/nm.2452
- Rodan GA and Martin TJ (2000) Therapeutic approaches to bone diseases. Science 289, 1508-1514 https://doi.org/10.1126/science.289.5484.1508
- Rivollier A, Mazzorana M, Tebib J et al (2004) Immature dendritic cell transdifferentiation into osteoclasts: a novel pathway sustained by the rheumatoid arthritis microenvironment. Blood 104, 4029-4037 https://doi.org/10.1182/blood-2004-01-0041
- Roodman GD (1999) Cell biology of the osteoclast. Exp Hematol 27, 1229-1241 https://doi.org/10.1016/S0301-472X(99)00061-2
- Takeshita S, Namba N, Zhao JJ et al (2002) SHIP-deficient mice are severely osteoporotic due to increased numbers of hyper-resorptive osteoclasts. Nat Med 8, 943-949 https://doi.org/10.1038/nm752
- Genant HK, Baylink DJ and Gallagher JC (1989) Estrogens in the prevention of osteoporosis in postmenopausal women. Am J Obstet Gynecol 161, 1842-1846 https://doi.org/10.1016/S0002-9378(89)80004-3
- Reid IR (2002) Pharmacotherapy of osteoporosis in postmenopausal women: focus on safety. Expert Opin Drug Saf 1, 93-107 https://doi.org/10.1517/14740338.1.1.93
- Kong YY, Yoshida H, Sarosi I et al (1999) OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature 397, 315-323 https://doi.org/10.1038/16852
- Lee ZH and Kim HH (2003) Signal transduction by receptor activator of nuclear factor kappa B in osteoclasts. Biochem Biophys Res Commun 305, 211-214 https://doi.org/10.1016/S0006-291X(03)00695-8
- Lee SE, Woo KM, Kim SY et al (2002) The phosphatidylinositol 3-kinase, p38, and extracellular signal-regulated kinase pathways are involved in osteoclast differentiation. Bone 30, 71-77 https://doi.org/10.1016/S8756-3282(01)00657-3
- Li J, Sarosi I, Yan XQ et al (2000) RANK is the intrinsic hematopoietic cell surface receptor that controls osteoclastogenesis and regulation of bone mass and calcium metabolism. Proc Natl Acad Sci U S A 97, 1566-1571 https://doi.org/10.1073/pnas.97.4.1566
- Walsh MC, Kim N, Kadono Y et al (2006) Osteoimmunology: interplay between the immune system and bone metabolism. Annu Rev Immunol 24, 33-63 https://doi.org/10.1146/annurev.immunol.24.021605.090646
- Chang Y, Huang WJ, Tien LT and Wang SJ (2008) Ginsenosides Rg1 and Rb1 enhance glutamate release through activation of protein kinase A in rat cerebrocortical nerve terminals (synaptosomes). Eur J Pharmacol 578, 28-36 https://doi.org/10.1016/j.ejphar.2007.09.023
- Chen WF, Lau WS, Cheung PY, Guo DA and Wong MS (2006) Activation of insulin-like growth factor I receptor-mediated pathway by ginsenoside Rg1. Br J Pharmacol 147, 542-551 https://doi.org/10.1038/sj.bjp.0706640
- Lau WS, Chan RY, Guo DA and Wong MS (2008) Ginsenoside Rg1 exerts estrogen-like activities via ligand-independent activation of ERalpha pathway. J Steroid Biochem Mol Biol 108, 64-71 https://doi.org/10.1016/j.jsbmb.2007.06.005
- Pan XY, Guo H, Han J et al (2012) Ginsenoside Rg3 attenuates cell migration via inhibition of aquaporin 1 expression in PC-3M prostate cancer cells. Eur J Pharmacol 683, 27-34 https://doi.org/10.1016/j.ejphar.2012.02.040
- Kim HR, Cui Y, Hong SJ et al (2008) Effect of ginseng mixture on osteoporosis in ovariectomized rats. Immunopharmacol Immunotoxicol 30, 333-345 https://doi.org/10.1080/08923970801949125
- Liu J, Shiono J, Shimizu K et al (2009) 20(R)-ginsenoside Rh2, not 20(S), is a selective osteoclastgenesis inhibitor without any cytotoxicity. Bioorg Med Chem Lett 19, 3320-3323 https://doi.org/10.1016/j.bmcl.2009.04.054
- Yuan HD, Kim DY, Quan HY, Kim SJ, Jung MS and Chung SH (2012) Ginsenoside Rg2 induces orphan nuclear receptor SHP gene expression and inactivates GSK3beta via AMP-activated protein kinase to inhibit hepatic glucose production in HepG2 cells. Chem Biol Interact 195, 35-42 https://doi.org/10.1016/j.cbi.2011.10.006
- Zhang G, Liu A, Zhou Y, San X, Jin T and Jin Y (2008) Panax ginseng ginsenoside-Rg2 protects memory impairment via anti-apoptosis in a rat model with vascular dementia. J Ethnopharmacol 115, 441-448 https://doi.org/10.1016/j.jep.2007.10.026
- Xue Q, Yu T, Wang Z et al (2023) Protective effect and mechanism of ginsenoside Rg2 on atherosclerosis. J Ginseng Res 47, 237-245 https://doi.org/10.1016/j.jgr.2022.08.001
- Zhou L, Wang F, Sun R et al (2016) SIRT5 promotes IDH2 desuccinylation and G6PD deglutarylation to enhance cellular antioxidant defense. EMBO Rep 17, 811-822 https://doi.org/10.15252/embr.201541643
- Yao F, Xue Q, Li K, Cao X, Sun L and Liu Y (2019) Phenolic compounds and ginsenosides in ginseng shoots and their antioxidant and anti-inflammatory capacities in LPS-induced RAW264.7 mouse macrophages. Int J Mol Sci 20, 2951
- Wang ZQ, Ovitt C, Grigoriadis AE, Mohle-Steinlein U, Ruther U and Wagner EF (1992) Bone and haematopoietic defects in mice lacking c-fos. Nature 360, 741-745 https://doi.org/10.1038/360741a0
- Takayanagi H, Kim S, Koga T et al (2002) Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts. Dev Cell 3, 889-901 https://doi.org/10.1016/S1534-5807(02)00369-6
- Lee JH, Jin H, Shim HE, Kim HN, Ha H and Lee ZH (2010) Epigallocatechin-3-gallate inhibits osteoclastogenesis by down-regulating c-Fos expression and suppressing the nuclear factor-kappaB signal. Mol Pharmacol 77, 17-25 https://doi.org/10.1124/mol.109.057877
- Nedeva IR, Vitale M, Elson A, Hoyland JA and Bella J (2021) Role of OSCAR signaling in osteoclastogenesis and bone disease. Front Cell Dev Biol 9, 641162
- Kim HN, Baek JK, Park SB et al (2019) Anti-inflammatory effect of Vaccinium oldhamii stems through inhibition of NF-kappaB and MAPK/ATF2 signaling activation in LPS-stimulated RAW264.7 cells. BMC Complement Altern Med 19, 291
- Teitelbaum SL and Ross FP (2003) Genetic regulation of osteoclast development and function. Nat Rev Genet 4, 638-649 https://doi.org/10.1038/nrg1122
- Teitelbaum SL (2004) RANKing c-Jun in osteoclast development. J Clin Invest 114, 463-465 https://doi.org/10.1172/JCI200422644
- Kiefer D and Pantuso T (2003) Panax ginseng. Am Fam Physician 68, 1539-1542
- Grigoriadis AE, Wang ZQ, Cecchini MG et al (1994) c-Fos: a key regulator of osteoclast-macrophage lineage determination and bone remodeling. Science 266, 443-448 https://doi.org/10.1126/science.7939685
- Yamashita T, Yao Z, Li F et al (2007) NF-kappaB p50 and p52 regulate receptor activator of NF-kappaB ligand (RANKL) and tumor necrosis factor-induced osteoclast precursor differentiation by activating c-Fos and NFATc1. J Biol Chem 282, 18245-18253 https://doi.org/10.1074/jbc.M610701200
- Wagner EF and Eferl R (2005) Fos/AP-1 proteins in bone and the immune system. Immunol Rev 208, 126-140 https://doi.org/10.1111/j.0105-2896.2005.00332.x
- Gohda J, Akiyama T, Koga T, Takayanagi H, Tanaka S and Inoue J (2005) RANK-mediated amplification of TRAF6 signaling leads to NFATc1 induction during osteoclastogenesis. EMBO J 24, 790-799 https://doi.org/10.1038/sj.emboj.7600564
- Takayanagi H (2007) Osteoimmunology: shared mechanisms and crosstalk between the immune and bone systems. Nat Rev Immunol 7, 292-304 https://doi.org/10.1038/nri2062
- Boyle WJ, Simonet WS and Lacey DL (2003) Osteoclast differentiation and activation. Nature 423, 337-342 https://doi.org/10.1038/nature01658
- Ang E, Liu Q, Qi M et al (2011) Mangiferin attenuates osteoclastogenesis, bone resorption, and RANKL-induced activation of NF-kappaB and ERK. J Cell Biochem 112, 89-97 https://doi.org/10.1002/jcb.22800
- Kim HJ, Lee Y, Chang EJ et al (2007) Suppression of osteoclastogenesis by N,N-dimethyl-D-erythro-sphingosine: a sphingosine kinase inhibition-independent action. Mol Pharmacol 72, 418-428 https://doi.org/10.1124/mol.107.034173
- Monje P, Hernandez-Losa J, Lyons RJ, Castellone MD and Gutkind JS (2005) Regulation of the transcriptional activity of c-Fos by ERK. A novel role for the prolyl isomerase PIN1. J Biol Chem 280, 35081-35084 https://doi.org/10.1074/jbc.C500353200
- Ikeda F, Nishimura R, Matsubara T et al (2004) Critical roles of c-Jun signaling in regulation of NFAT family and RANKL-regulated osteoclast differentiation. J Clin Invest 114, 475-484 https://doi.org/10.1172/JCI200419657
- Matsumoto M, Sudo T, Saito T, Osada H and Tsujimoto M (2000) Involvement of p38 mitogen-activated protein kinase signaling pathway in osteoclastogenesis mediated by receptor activator of NF-kappa B ligand (RANKL). J Biol Chem 275, 31155-31161 https://doi.org/10.1074/jbc.M001229200