Journal of the Institute of Electronics Engineers of Korea CI
/
v.39
no.4
/
pp.10-18
/
2002
Network topology design is a multiobjective problem with various design components. The components such as cost, message delay and reliability are important to gain the best performance. Recently, Genetic Algorithms(GAs) have been widely used as an optimization method for real-world problems such as combinatorial optimization, network topology design, and so on. This paper proposed a method of Multi-objective GA for Design of the network topology which is to minimize connection cost and message delay time. A common difficulty in multiobjective optimization is the existence of an objective conflict. We used the prufer number and cluster string for encoding, parato elimination method and niche-formation method for the fitness sharing method, and reformation elitism for the prevention of pre-convergence. From the simulation, the proposed method shows that the better candidates of network architecture can be found.
Park, Ho-Sung;Park, Byoung-Jun;Kim, Hyun-Ki;Oh, Sung-Kwun
International Journal of Control, Automation, and Systems
/
v.2
no.4
/
pp.423-434
/
2004
In this paper, we introduce a new topology of Self-Organizing Polynomial Neural Networks (SOPNN) based on genetically optimized Multi-Layer Perceptron (MLP) and discuss its comprehensive design methodology involving mechanisms of genetic optimization. Let us recall that the design of the 'conventional' SOPNN uses the extended Group Method of Data Handling (GMDH) technique to exploit polynomials as well as to consider a fixed number of input nodes at polynomial neurons (or nodes) located in each layer. However, this design process does not guarantee that the conventional SOPNN generated through learning results in optimal network architecture. The design procedure applied in the construction of each layer of the SOPNN deals with its structural optimization involving the selection of preferred nodes (or PNs) with specific local characteristics (such as the number of input variables, the order of the polynomials, and input variables) and addresses specific aspects of parametric optimization. An aggregate performance index with a weighting factor is proposed in order to achieve a sound balance between the approximation and generalization (predictive) abilities of the model. To evaluate the performance of the GA-based SOPNN, the model is experimented using pH neutralization process data as well as sewage treatment process data. A comparative analysis indicates that the proposed SOPNN is the model having higher accuracy as well as more superb predictive capability than other intelligent models presented previously.reviously.
In this rarer, we introduce a new Fuzzy Polynomial Neural Networks (FPNNs)-like structure whose neuron is based on the Fuzzy Set-based Fuzzy Inference System (FS-FIS) and is different from that of FPNNs based on the Fuzzy relation-based Fuzzy Inference System (FR-FIS) and discuss the ability of the new FPNNs-like structurenamed Fuzzy Set-based Polynomial Neural Networks (FSPNN). The premise parts of their fuzzy rules are not identical, while the consequent parts of the both Networks (such as FPNN and FSPNN) are identical. This difference results from the angle of a viewpoint of partition of input space of system. In other word, from a point of view of FS-FIS, the input variables are mutually independent under input space of system, while from a viewpoint of FR-FIS they are related each other. In considering the structures of FPNN-like networks such as FPNN and FSPNN, they are almost similar. Therefore they have the same shortcomings as well as the same virtues on structural side. The proposed design procedure for networks' architecture involves the selection of appropriate nodes with specific local characteristics such as the number of input variables, the order of the polynomial that is constant, linear, quadratic, or modified quadratic functions being viewed as the consequent part of fuzzy rules, and a collection of the specific subset of input variables. On the parameter optimization phase, we adopt Information Granulation (IG) based on HCM clustering algorithm and a standard least square method-based learning. Through the consecutive process of such structural and parametric optimization, an optimized and flexible fuzzy neural network is generated in a dynamic fashion. To evaluate the performance of the genetically optimized FSPNN (gFSPNN), the model is experimented with using gas furnace process dataset.
Journal of the Korean Institute of Intelligent Systems
/
v.12
no.6
/
pp.531-536
/
2002
In this paper, we have applied Genetic Algorithms(GAs) to Intrusion Detection System(TDS), and then proposed and simulated the misuse detection model firstly. We have implemented with the KBD contest data, and tried to simulated in the same environment. In the experiment, the set of record is regarded as a chromosome, and GAs are used to produce the intrusion patterns. That is, the intrusion rules are generated. We have concentrated on the simulation and analysis of classification among the Data Mining techniques and then the intrusion patterns are produced. The generated rules are represented by intrusion data and classified between abnormal and normal users. The different rules are generated separately from three models "Time Based Traffic Model", "Host Based Traffic Model", and "Content Model". The proposed system has generated the update and adaptive rules automatically and continuously on the misuse detection method which is difficult to update the rule generation. The generated rules are experimented on 430M test data and almost 94.3% of detection rate is shown.3% of detection rate is shown.
Journal of the Korean Institute of Intelligent Systems
/
v.10
no.4
/
pp.343-350
/
2000
In this paper, we propose the Multi-FPNN(Fuzzy Polynomial Neural Networks) model based on FNN and PNN(Polyomial Neural Networks) for optimal system identifacation. Here FNN structure is designed using fuzzy input space divided by each separated input variable, and urilized both in order to get better output performace. Each node of PNN structure based on GMDH(Group Method of Data handing) method uses two types of high-order polynomials such as linearane and quadratic, and the input of that node uses three kinds of multi-variable inputs such as linear and quadratic, and the input of that node and Genetic Algorithms(GAs) to identify both the structure and the prepocessing of parameters of a Multi-FPNN model. Here, HCM clustering method, which is carried out for data preproessing of process system, is utilized to determine the structure method, which is carried out for data preprocessing of process system, is utilized to determance index with a weighting factor is used to according to the divisions of input-output space. A aggregate performance inddex with a wegihting factor is used to achieve a sound balance between approximation and generalization abilities of the model. According to the selection and adjustment of a weighting factor of this aggregate abjective function which it is acailable and effective to design to design and optimal Multi-FPNN model. The study is illustrated with the aid of two representative numerical examples and the aggregate performance index related to the approximation and generalization abilities of the model is evaluated and discussed.
Journal of the Korea Society of Computer and Information
/
v.5
no.4
/
pp.41-47
/
2000
In modern dynamic management environment, there is growing recognition that information & knowledge management systems are essential for CEO's efficient/effective decision making. As a key component to cope with this current, we suggest the management performance data-mining system based on IT(Information Technology). This system measures management performance that is considered with both VA(Value-Added), which represents stakeholder's point of view and EVA(Economic Value-Added), which represents shareholder's point of view. The relationship between management performance and 85 financial ratios is analyzed, and then important financial ratios are drawn out. In analyzing the relationship, we applied the explanation-based Gas(Genetic Algorithms) that consider predictability, understanability (lucidity) and reasonability factors simultaneously. To demonstrate the performance of the system, we conducted a case study using financial data over the 16-years from 1981 to 1996 of Korean automobile industry which is taken from database of KISFAS(Korea Investors Services Financial Analysis System).
Park Keon-Jun;Ahn Tae-Chon;Oh Sung-kwun;Kim Hyun-Ki
Journal of the Korean Institute of Intelligent Systems
/
v.15
no.1
/
pp.81-86
/
2005
In this study, we introduce a new category of fuzzy inference systems based on information granulation to carry out the model identification of complex and nonlinear systems. Informally speaking, information granules are viewed as linked collections of objects (data, in particular) drawn together by the criteria of proximity, similarity, or functionality Granulation of information with the aid of Hard C-Means (HCM) clustering help determine the initial parameters of fuzzy model such as the initial apexes of the membership functions and the initial values of polynomial functions being used in the premise and consequence part of the fuzzy rules. And the initial parameters are tuned effectively with the aid of the genetic algorithms(GAs) and the least square method (LSM). An aggregate objective function with a weighting factor is also used in order to achieve a balance between performance of the fuzzy model. The proposed model is evaluated with using a numerical example and is contrasted with the performance of conventional fuzzy models in the literature.
The Transactions of the Korea Information Processing Society
/
v.6
no.4
/
pp.952-958
/
1999
This paper presented the application of GAs as a means of finding optimal solutions over a parameter space in the controller design for a fuzzy control system. The performance can involve a weighted combination of various performance characteristics such as rise-time, settling-time, settling-time, overshoot. The results obtained here are compared with those for a traditional design obtained using the root-locus method. In contrast to traditional methods, the GA-based method does not require the usual mathematical processess or mathematical model of the system. In this paper, the Ga-based Fuzzy control system combining Fuzzy control theory with the GA, that is known to be very effective in the optimization problem, will be proposed The effectiveness of the proposed control system will be demonstrated by computer simulations using task tracking position system in stable and unstable linear systems. It is shown that the GA-based controller is better than the traditional controller used It stable and unstable linear systems.
본 논문에서는 경제학, 사회학, 수학 분야에서 수십년 전부터 연구해오던 죄수의 딜레마 게임의 협동진화에 대해 고찰해보고자 한다. 반복적 죄수의 딜레마 게임은 게임이론의 가장 기본적인 이론으로써, 사회적 상호작용, 경제활동, 국제관계 등 다양한 현상들을 모델링 하기 위한 하나의 방법이다. 그 중에 N명이 참가하는 반복적 죄수 딜레마 게임의 전략은 유전 알고리즘(Genetic Algorithms, GAs)을 통해 진화적으로 만들어 낼 수 있으며, 이 경우에 그 결과를 일반적인 내쉬 균형 이 아닌, 모든 개체들이 유전알고리즘을 통해 협동으로 수렴하도록 유도할 수 있다는 사실은 상당히 시사하는 바가 크다. 기존에 주로 연구되어오던 죄수의 딜레마 게임은 협동으로의 수렴과정에서 일반적으로 순위기반선택(Rank-based selection)과 1점 교배기법(1point crossover)을 사용한다. 그러나 순위기반선택은 모든 개체에 순위을 매겨야 하기 때문에, 개체수가 커질수록 성능이 저하되며, 1점 교배기법은 개체 값이 분산되어있을 경우, 최적해(Optimal solution)을 찾기 힘들다는 단점이 있어, 개체수가 많은 경우에 적용하기에는 비효율적이다. 본 논문에서는 토너먼트 선택기법(Tournament selection)과 자기 적응형 교배기법(Self-adaptive crossover)을 적용한 새로운 기법을 제안한다. 또한 기존 기법과 비교 실험을 통해 제안기법이 기존기법에 비해 평균 수렴시간과 수렴 횟수에서 뛰어난 성능을 보이고 있음을 확인하였다.
Journal of the Korean Institute of Intelligent Systems
/
v.15
no.2
/
pp.236-244
/
2005
In this study, we introduce a new topology of Fuzzy Polynomial Neural Networks(FPNN) that is based on fuzzy relation and evolutionally optimized Multi-Layer Perceptron, discuss a comprehensive design methodology and carry out a series of numeric experiments. The construction of the evolutionally optimized FPNN(EFPNN) exploits fundamental technologies of Computational Intelligence. The architecture of the resulting EFPNN results from a synergistic usage of the genetic optimization-driven hybrid system generated by combining rule-based Fuzzy Neural Networks(FNN) with polynomial neural networks(PNN). FNN contributes to the formation of the premise part of the overall rule-based structure of the EFPNN. The consequence part of the EFPNN is designed using PNN. As the consequence part of the EFPNN, the development of the genetically optimized PNN(gPNN) dwells on two general optimization mechanism: the structural optimization is realized via GAs whereas in case of the parametric optimization we proceed with a standard least square method-based learning. To evaluate the performance of the EFPNN, the models are experimented with the use of several representative numerical examples. A comparative analysis shows that the proposed EFPNN are models with higher accuracy as well as more superb predictive capability than other intelligent models presented previously.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.