Mun Kyeong-Jun;Song Myoung-Kee;Kim Hyung-Su;Kim Chul-Hong;Park June Ho;Lee Hwa-Seok
The Transactions of the Korean Institute of Electrical Engineers A
/
v.53
no.10
/
pp.556-564
/
2004
This paper presents an application of parallel Genetic Algorithm-Tabu Search(GA-TS) algorithm to search an optimal solution of a reconfiguration in distribution system. The aim of the reconfiguration of distribution systems is to determine switch position to be opened for loss minimization in the radial distribution systems, which is a discrete optimization problem. This problem has many constraints and very difficult to solve the optimal switch position because it has many local minima. This paper develops parallel GA-TS algorithm for reconfiguration of distribution systems. In parallel GA-TS, GA operators are executed for each processor. To prevent solution of low fitness from appearing in the next generation, strings below the average fitness are saved in the tabu list. If best fitness of the GA is not changed for several generations, TS operators are executed for the upper 10% of the population to enhance the local searching capabilities. With migration operation, best string of each node is transferred to the neighboring node aster predetermined iterations are executed. For parallel computing, we developed a PC-cluster system consisting of 8 PCs. Each PC employs the 2 GHz Pentium Ⅳ CPU and is connected with others through ethernet switch based fast ethernet. To show the usefulness of the proposed method, developed algorithm has been tested and compared on a distribution systems in the reference paper. From the simulation results, we can find that the proposed algorithm is efficient and robust for the reconfiguration of distribution system in terms of the solution qualify. speedup. efficiency and computation time.
KIEE International Transactions on Power Engineering
/
v.5A
no.2
/
pp.116-124
/
2005
This paper presents an application of the parallel Genetic Algorithm-Tabu Search (GA- TS) algorithm, and that is to search for an optimal solution of a reconfiguration in distribution systems. The aim of the reconfiguration of distribution systems is to determine the appropriate switch position to be opened for loss minimization in radial distribution systems, which is a discrete optimization problem. This problem has many constraints and it is very difficult to solve the optimal switch position because of its numerous local minima. This paper develops a parallel GA- TS algorithm for the reconfiguration of distribution systems. In parallel GA-TS, GA operators are executed for each processor. To prevent solution of low fitness from appearing in the next generation, strings below the average fitness are saved in the tabu list. If best fitness of the GA is not changed for several generations, TS operators are executed for the upper 10$\%$ of the population to enhance the local searching capabilities. With migration operation, the best string of each node is transferred to the neighboring node after predetermined iterations are executed. For parallel computing, we developed a PC-cluster system consisting of 8 PCs. Each PC employs the 2 GHz Pentium IV CPU and is connected with others through switch based rapid Ethernet. To demonstrate the usefulness of the proposed method, the developed algorithm was tested and is compared to a distribution system in the reference paper From the simulation results, we can find that the proposed algorithm is efficient and robust for the reconfiguration of distribution system in terms of the solution quality, speedup, efficiency, and computation time.
In the learning phase of multilyer feedforword neural network,there are problems such that local minimum,learning praralysis and slow learning speed when backpropagation algorithm used.To overcome these problems, the genetic algorithm has been used as learing method in the multilayer feedforword neural network instead of backpropagation algorithm.However,because the genetic algorith, does not have any mechanism for fine-tuned local search used in backpropagation method,it takes more time that the genetic algorithm converges to a global optimal solution.In this paper,we suggest a new GA-BP method which provides a fine-tunes local search to the genetic algorithm.GA-BP method uses gradient descent method as one of genetic algorithm's operators such as mutation or crossover.To show the effciency of the developed method,we applied it to the 3-parity bit problem with analysis.
Journal of the Korea Society of Computer and Information
/
v.28
no.12
/
pp.79-87
/
2023
In this paper, we propose a novel genetic algorithm to reduce the overall span time by optimizing the skid insertion sequence in the shipyard subassembly process. We represented a solution by a permutation of a set of skid ids and applied genetic operators suitable for such a representation. In addition, we combined the genetic algorithm and the existing heuristic algorithm called UniDev which is properly modified to improve the search performance. In particular, the slow skid search part in UniDev was changed to a greedy algorithm. Through extensive large-scaled simulations, it was observed that the span time of our method was stably minimized compared to Multi-Start search and a genetic algorithm combined with UniDev.
Journal of Korean Institute of Industrial Engineers
/
v.26
no.2
/
pp.183-192
/
2000
This paper considers the problem of scheduling a set of n jobs on m parallel machines to minimize total weighted tardiness. For the problem a genetic algorithm is proposed, in which solutions are encoded using the random key method suggested by Bean and new crossover operators are employed to increase performance of the algorithm. The algorithm is compared with the Modified Due-Date (MDD) algorithm after series of tests to find appropriate values for genetic parameters. Results of computational tests on randomly generated test problems show that the suggested algorithm performs better than the MDD algorithm and gives good solutions in a reasonable amount of computation time.
Proceedings of the Korea Society for Simulation Conference
/
1998.10a
/
pp.142-146
/
1998
In this paper, we suggests a WIP(work in process) of FMS analysis methods based on the Genetic algorithm. We conjoined both the assignment and the scheduling problem in order to create a new representation scheme for a chromosome and a mutation operators.
Due to the fact that the ratio of their height to their openings is very large compared to normal beams, there are difficulties in the design and analysis of deep beams, which differ in behavior. In this study, the optimum horizontal and vertical reinforcement diameters of 5 different beams were determined by using genetic algorithms (GA) due to the openness/height ratio (L/h), loading condition and the presence of spaces in the body. In this study, the effect of different mutation operators and improved double times sensitive mutation (DTM) operator on GA's performance was investigated. In the study following random mutation (RM), boundary mutation (BM), non-uniform random mutation (NRM), Makinen, Periaux and Toivanen (MPT) mutation, power mutation (PM), polynomial mutation (PNM), and developed DTM mutation operators were applied to five deep beam problems were used to determine the minimum reinforcement diameter. The fitness values obtained using developed DTM mutation operator was higher than obtained from existing mutation operators. Moreover; obtained reinforcement weight of the deep beams using the developed DTM mutation operator lower than obtained from the existing mutation operators. As a result of the analyzes, the highest fitness value was obtained from the applied double times sensitive mutation (DTM) operator. In addition, it was found that this study, which was carried out using GAs, contributed to the solution of the problems experienced in the design of deep beams.
Journal of the Korean Operations Research and Management Science Society
/
v.24
no.3
/
pp.27-37
/
1999
In just-in-time production systems, U-shaped production lines rather than traditional straight lines are often adopted since they have some advantages. The advantages of U-lines over straight lines are that the workstations required can be reduced and the necessary number of workers can be easily adjusted when the demand rates are changed. In this paper, we present a new heuristic based on genetic algorithm to improve the workload smoothness in the U-line. In the proposed algorithm, a new genetic representation is developed which is specific to the problem being solved. To enhance the capability of searching good solutions, genetic operators are designed by using the problem-specific information and heuristics. Extensive experiments are carried out on well-known test-bed problems in the literature to verify the performance of our algorithm. The computational results show that our algorithm is a promising alternative to existing heuristics.
Pongcharoen, Pupong;Khadwilard, Aphirak;Hicks, Christian
Industrial Engineering and Management Systems
/
v.7
no.3
/
pp.204-213
/
2008
Companies that produce capital goods need to schedule the production of products that have complex product structures with components that require many operations on different machines. A feasible schedule must satisfy operation and assembly precedence constraints. It is also important to avoid deadlock situations. In this paper a Genetic Algorithm (GA) has been developed that includes a new repair process that rectifies infeasible schedules that are produced during the evolution process. The algorithm was designed to minimise the combination of earliness and tardiness penalties and took into account finite capacity constraints. Three different sized problems were obtained from a collaborating capital goods company. A design of experimental approach was used to systematically identify that the best genetic operators and GA parameters for each size of problem.
Proceedings of the Korean Operations and Management Science Society Conference
/
2004.05a
/
pp.425-428
/
2004
Flexible assembly line (FAL) is a production system that assembles various parts in unidirectional flow line with many constraints and manufacturing flexibilities. In this research we deal with a FAL balancing problem with the objective of minimizing the maximum workload allocated to the stations. However, almost all the existing researches do not appropriately consider various constraints due to the problem complexity. Therefore, this thesis addresses a balancing problem of FAL with many constraints and manufacturing flexibilities, unlike the previous researches. To solve this problem we use a genetic algorithm (GA). To apply GA to FAL, we suggest a genetic representation suitable for FAL balancing and devise evaluation method for individual's fitness and genetic operators specific to the problem, including efficient repair method for preserving solution feasibility. The experimental results are reported.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.