• Title/Summary/Keyword: generative AI model

Search Result 116, Processing Time 0.023 seconds

Application of Deep Learning to Solar Data: 3. Generation of Solar images from Galileo sunspot drawings

  • Lee, Harim;Moon, Yong-Jae;Park, Eunsu;Jeong, Hyunjin;Kim, Taeyoung;Shin, Gyungin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.81.2-81.2
    • /
    • 2019
  • We develop an image-to-image translation model, which is a popular deep learning method based on conditional Generative Adversarial Networks (cGANs), to generate solar magnetograms and EUV images from sunspot drawings. For this, we train the model using pairs of sunspot drawings from Mount Wilson Observatory (MWO) and their corresponding SDO/HMI magnetograms and SDO/AIA EUV images (512 by 512) from January 2012 to September 2014. We test the model by comparing pairs of actual SDO images (magnetogram and EUV images) and the corresponding AI-generated ones from October to December in 2014. Our results show that bipolar structures and coronal loop structures of AI-generated images are consistent with those of the original ones. We find that their unsigned magnetic fluxes well correlate with those of the original ones with a good correlation coefficient of 0.86. We also obtain pixel-to-pixel correlations EUV images and AI-generated ones. The average correlations of 92 test samples for several SDO lines are very good: 0.88 for AIA 211, 0.87 for AIA 1600 and 0.93 for AIA 1700. These facts imply that AI-generated EUV images quite similar to AIA ones. Applying this model to the Galileo sunspot drawings in 1612, we generate HMI-like magnetograms and AIA-like EUV images of the sunspots. This application will be used to generate solar images using historical sunspot drawings.

  • PDF

Feature Analysis for Detecting Mobile Application Review Generated by AI-Based Language Model

  • Lee, Seung-Cheol;Jang, Yonghun;Park, Chang-Hyeon;Seo, Yeong-Seok
    • Journal of Information Processing Systems
    • /
    • v.18 no.5
    • /
    • pp.650-664
    • /
    • 2022
  • Mobile applications can be easily downloaded and installed via markets. However, malware and malicious applications containing unwanted advertisements exist in these application markets. Therefore, smartphone users install applications with reference to the application review to avoid such malicious applications. An application review typically comprises contents for evaluation; however, a false review with a specific purpose can be included. Such false reviews are known as fake reviews, and they can be generated using artificial intelligence (AI)-based text-generating models. Recently, AI-based text-generating models have been developed rapidly and demonstrate high-quality generated texts. Herein, we analyze the features of fake reviews generated from Generative Pre-Training-2 (GPT-2), an AI-based text-generating model and create a model to detect those fake reviews. First, we collect a real human-written application review from Kaggle. Subsequently, we identify features of the fake review using natural language processing and statistical analysis. Next, we generate fake review detection models using five types of machine-learning models trained using identified features. In terms of the performances of the fake review detection models, we achieved average F1-scores of 0.738, 0.723, and 0.730 for the fake review, real review, and overall classifications, respectively.

Integrating AI Generative Art and Gamification in an Art Education Model to Enhance Creative Thinking (AI 생성예술과 게임화 요소가 통합된 미술 교육 모델 개발 : 창의적 사고 향상)

  • Li Jun;Kim Yoojin
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.3
    • /
    • pp.425-433
    • /
    • 2023
  • In this study, we developed a virtual artist play lesson model using gamification concepts and AI-generated art programs to foster creative thinking in freshman art majors. Targeting first-year students in the Digital Media Art Department at Sichuan Film & Television University in China, this course aims to alleviate fear of artistic creation and enhance problem-solving abilities. The educational model consists of four stages: persona creation, creative writing, text visualization, and virtual exhibitions. Through persona creation, students established their artist identities, and by introducing game-like elements into writing experiences, they discovered their latent creativity. Using AI-generated art programs for text visualization, students gained confidence in their creations, and in the virtual exhibitions, they were able to enhance their self-esteem as artists by appreciating and evaluating each other's works. This educational model offers a new approach to promoting creative thinking and problem-solving skills while increasing learner engagement and interest. Based on these research findings, we expect that by developing and implementing educational strategies that cultivate creative thinking, more students will grow their artistic capacities and creativity, benefiting not only art majors but also students from various fields.

Users' Attachment Styles and ChatGPT Interaction: Revealing Insights into User Experiences

  • I-Tsen Hsieh;Chang-Hoon Oh
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.3
    • /
    • pp.21-41
    • /
    • 2024
  • This study explores the relationship between users' attachment styles and their interactions with ChatGPT (Chat Generative Pre-trained Transformer), an advanced language model developed by OpenAI. As artificial intelligence (AI) becomes increasingly integrated into everyday life, it is essential to understand how individuals with different attachment styles engage with AI chatbots in order to build a better user experience that meets specific user needs and interacts with users in the most ideal way. Grounded in attachment theory from psychology, we are exploring the influence of attachment style on users' interaction with ChatGPT, bridging a significant gap in understanding human-AI interaction. Contrary to expectations, attachment styles did not have a significant impact on ChatGPT usage or reasons for engagement. Regardless of their attachment styles, hesitated to fully trust ChatGPT with critical information, emphasizing the need to address trust issues in AI systems. Additionally, this study uncovers complex patterns of attachment styles, demonstrating their influence on interaction patterns between users and ChatGPT. By focusing on the distinctive dynamics between users and ChatGPT, our aim is to uncover how attachment styles influence these interactions, guiding the development of AI chatbots for personalized user experiences. The introduction of the Perceived Partner Responsiveness Scale serves as a valuable tool to evaluate users' perceptions of ChatGPT's role, shedding light on the anthropomorphism of AI. This study contributes to the wider discussion on human-AI relationships, emphasizing the significance of incorporating emotional intelligence into AI systems for a user-centered future.

Agricultural Applicability of AI based Image Generation (AI 기반 이미지 생성 기술의 농업 적용 가능성)

  • Seungri Yoon;Yeyeong Lee;Eunkyu Jung;Tae In Ahn
    • Journal of Bio-Environment Control
    • /
    • v.33 no.2
    • /
    • pp.120-128
    • /
    • 2024
  • Since ChatGPT was released in 2022, the generative artificial intelligence (AI) industry has seen massive growth and is expected to bring significant innovations to cognitive tasks. AI-based image generation, in particular, is leading major changes in the digital world. This study investigates the technical foundations of Midjourney, Stable Diffusion, and Firefly-three notable AI image generation tools-and compares their effectiveness by examining the images they produce. The results show that these AI tools can generate realistic images of tomatoes, strawberries, paprikas, and cucumbers, typical crops grown in greenhouse. Especially, Firefly stood out for its ability to produce very realistic images of greenhouse-grown crops. However, all tools struggled to fully capture the environmental context of greenhouses where these crops grow. The process of refining prompts and using reference images has proven effective in accurately generating images of strawberry fruits and their cultivation systems. In the case of generating cucumber images, the AI tools produced images very close to real ones, with no significant differences found in their evaluation scores. This study demonstrates how AI-based image generation technology can be applied in agriculture, suggesting a bright future for its use in this field.

Generation of modern satellite data from Galileo sunspot drawings by deep learning

  • Lee, Harim;Park, Eunsu;Moon, Young-Jae
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.1
    • /
    • pp.41.1-41.1
    • /
    • 2021
  • We generate solar magnetograms and EUV images from Galileo sunspot drawings using a deep learning model based on conditional generative adversarial networks. We train the model using pairs of sunspot drawing from Mount Wilson Observatory (MWO) and their corresponding magnetogram (or UV/EUV images) from 2011 to 2015 except for every June and December by the SDO (Solar Dynamic Observatory) satellite. We evaluate the model by comparing pairs of actual magnetogram (or UV/EUV images) and the corresponding AI-generated one in June and December. Our results show that bipolar structures of the AI-generated magnetograms are consistent with those of the original ones and their unsigned magnetic fluxes (or intensities) are well consistent with those of the original ones. Applying this model to the Galileo sunspot drawings in 1612, we generate HMI-like magnetograms and AIA-like EUV images of the sunspots. We hope that the EUV intensities can be used for estimating solar EUV irradiance at long-term historical times.

  • PDF

Applications and Concerns of Generative AI: ChatGPT in the Field of Occupational Health (산업보건분야에서의 생성형 AI: ChatGPT 활용과 우려)

  • Ju Hong Park;Seunghon Ham
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.33 no.4
    • /
    • pp.412-418
    • /
    • 2023
  • As advances in artificial intelligence (AI) increasingly approach areas once relegated to the realm of science fiction, there is growing public interest in using these technologies for practical everyday tasks in both the home and the workplace. This paper explores the applications of and implications for of using ChatGPT, a conversational AI model based on GPT-3.5 and GPT-4.0, in the field of occupational health and safety. After gaining over one million users within five days of its launch, ChatGPT has shown promise in addressing issues ranging from emergency response to chemical exposure to recommending personal protective equipment. However, despite its potential usefulness, the integration of AI into scientific work and professional settings raises several concerns. These concerns include the ethical dimensions of recognizing AI as a co-author in academic publications, the limitations and biases inherent in the data used to train these models, legal responsibilities in professional contexts, and potential shifts in employment following technological advances. This paper aims to provide a comprehensive overview of these issues and to contribute to the ongoing dialogue on the responsible use of AI in occupational health and safety.

Exploring Service Improvement Opportunities through Analysis of OTT App Reviews (OTT 앱 리뷰 분석을 통한 서비스 개선 기회 발굴 방안 연구)

  • Joongmin Lee;Chie Hoon Song
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.27 no.2_2
    • /
    • pp.445-456
    • /
    • 2024
  • This study aims to suggest service improvement opportunities by analyzing user review data of the top three OTT service apps(Netflix, Coupang Play, and TVING) on Google Play Store. To achieve this objective, we proposed a framework for uncovering service opportunities through the analysis of negative user reviews from OTT service providers. The framework involves automating the labeling of identified topics and generating service improvement opportunities using topic modeling and prompt engineering, leveraging GPT-4, a generative AI model. Consequently, we pinpointed five dissatisfaction topics for Netflix and TVING, and nine for Coupang Play. Common issues include "video playback errors", "app installation and update errors", "subscription and payment" problems, and concerns regarding "content quality". The commonly identified service enhancement opportunities include "enhancing and diversifying content quality". "optimizing video quality and data usage", "ensuring compatibility with external devices", and "streamlining payment and cancellation processes". In contrast to prior research, this study introduces a novel research framework leveraging generative AI to label topics and propose improvement strategies based on the derived topics. This is noteworthy as it identifies actionable service opportunities aimed at enhancing service competitiveness and satisfaction, instead of merely outlining topics.

The Role of Functional and Playful Experiential Value on the Intention to Use ChatGPT (사용자가 인지하는 기능적, 유희적 경험가치가 챗GPT의 재사용 의도에 미치는 영향)

  • Hyun Ju Suh;Jumin Lee;Jounghae Bang
    • Journal of Information Technology Services
    • /
    • v.23 no.1
    • /
    • pp.81-95
    • /
    • 2024
  • ChatGPT, a generative artificial intelligence(AI) technology that analyzes conversations to identify users' intentions and generates responses in consideration of the context of the conversation, is attracting attention from a user interface (UI) perspective that it can provide information through natural conversations with users. This study examined the effect of functional and playful values experienced by early users of ChatGPT on reuse intention and verified the structural relationship between technological efficacy, experiential values, and reuse intention. To verify the research model and hypotheses, a survey was conducted on college students who used ChatGPT for the first time. A total of 156 responses were received and 154 responses were used for analysis. As a result, both the functional experiential value and playful experiential value in the initial use process had significant effects on the intention to use ChatGPT. In addition, it was found that technological efficiency had a significant effect on functional and playful experiential values.

A Study on Active Senior Travel Recognition Using ChatGPT (ChatGPT를 활용한 액티브 시니어 여행 인식 탐색 연구)

  • Han Jangheon
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.20 no.3
    • /
    • pp.25-35
    • /
    • 2024
  • ChatGPT, a leading example of generative AI, is expanding the use of its LLM (Large Language Model) from traditional academic fields such as literature and creative writing to practical areas like management, tourism, and media. This study was conducted with active seniors to analyze their perceptions of travel and tourism, identifying key areas of interest and specific details. ChatGPT was utilized as an analytical tool in major areas of the study, providing suggestions for key findings.The research findings are as follows: First, terms closely associated with active senior travel include retirement, together, service, consumption, leisure, health, life, hobby, culture, generation, platform, wellness, and program. Second, centrality analysis showed that words like service, leisure, and together had high degrees of centrality and closeness centrality, while terms such as health, domestic, culture, activity, program, and life had high closeness centrality. Third, based on the CONCOR analysis with suggestions from ChatGPT, two clusters were identified: 'Retirement and Lifestyle' and 'Senior Services and Platforms'. Based on the research findings, practical implications for active senior travel were identified, along with academic implications for the field of tourism studies.