• Title/Summary/Keyword: generated load

Search Result 1,312, Processing Time 0.028 seconds

Acoustic Emission on Failure Analysis of Rubber-Modified Epoxy Resin

  • Lee Deok-Bo
    • Fibers and Polymers
    • /
    • v.5 no.4
    • /
    • pp.259-263
    • /
    • 2004
  • Rubber-modified epoxy resins have been employed as adhesive and matrix materials for glass and corbon-fiber composites. The behavior of fracture around a crack tip for rubber-modified epoxy resin is investigated through the acoustic emission (AE) analysis of compact tension specimens. Damage zone and rubber particles distributed around a crack tip were observed by a polarized optical microscope and an atomic force microscope (AFM). The damage zone in front of pre-crack tip in rubber-modified specimen $(15wt\%\; rubber)$ began to form at about $13\%$ level of the fracture load and grew in size until $57\%$ load level. After that, the crack propagated in a stick-slip manner. Based on time-frequency analysis of AE signals and microscopic observation of damage zone, it was thought that AE signals with frequency bands of 0.15-0.20 MHz and 0.20­0.30 MHz were generated from cavitation in the damage zone and crack propagation, respectively.

The Design of Active Power Filter with the Performance of Harmonic Suppression and Input Power Factor Correction (고조파 저감과 입력역률 개선을 위한 전력용 능동필터의 설계)

  • Park, Hae-Won;Choi, Seong-Kwan;Kim, Ho;Kim, Beung-Jin;Jeon, Hee-Jong
    • Proceedings of the KIEE Conference
    • /
    • 2000.11b
    • /
    • pp.375-377
    • /
    • 2000
  • In this paper, voltage controlled APF(Active Power Filter) is introduced to improve power factor and reduce harmonic generated from nonlinear load. The voltage controlled APF which is consisted of inverter and passive filter operates with nonlinear load simultaneously. According to the results of simulation, it is proved that the proposed system has the performance of improving power factor and reducing harmonics.

  • PDF

Effect of PSD Function on Linear Response and Inelastic Response of Single Degree of Freedom System (단자유도 시스템의 선형응답과 비탄성응답에 미치는 PSD함수의 영향)

  • Choi, Dong-Ho;Lee, Sang-Hoon;Kim, Yong-Sik;Koh, Jung-Hoon
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.257-259
    • /
    • 2008
  • Acceleration time history (ATH) used in the seismic analysis should envelop a target power spectral density (PSD) function in addition to the design response spectrum in order to have sufficient energy at each frequency for the purpose of ensuring adequate load. Even though design regulations require the ATH used in seismic analysis to meet a target PSD function, the reason that ATHs meet to a target PSD function is not described. Thus, artificial ATHs for high PSD function and artificial ATHs for low PSD function are generated. And then elastic and inelastic single-degree-of-freedom (SDOF) systems are loaded with these artificial time histories as the earthquake load. As a result, linear response and inelastic response of SDOF systems are affected by PSD function.

  • PDF

A Study on the Active EMI Filter for LED Driver (LED 구동장치용 능동 EMI 필터의 실현)

  • Lee, Dong-Ho;Choi, Min-Whan;Park, Chong-Yeun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.2
    • /
    • pp.62-68
    • /
    • 2015
  • Recently, LED is being used as various applications such as home lightings, work lightings and so on. EMI noise generated from LED driver have become a problem according to increase the use of LED. In this paper, Active EMI filter composed active and passive components is discribed as a method of solving a problem of EMI. The proposed filter is applied to the 160W LED load to verify performance experimentally. To compare the performance, We did an experiment using the proposed filter and the passive filter on the same 160W LED load and Driver System. As a result, The proposed Active EMI filter attenuated Conduction EMI noise better than any existing passive filter.

Heat and Flow Analysis on Cabin Room of Battle Tank (전차 포탑 승무원실의 내부 열/유동장에 관한 수치적 연구)

  • NamKoung, H.J.;Lee, K.H.;Park, B.H.;Roh, K.L.
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.9 no.2 s.25
    • /
    • pp.5-10
    • /
    • 2006
  • The heavy thermal load to battle tanks can cause electronic components' malfunction and crew to be put out of action. The thermal load is generated from Internal heat sources such as electronic devices installed in the room as well as extremely hot weather. In this study, heat and flow analysis for the cabin room of a battle tank was performed to deal with this thermal problem. This study presented the validation of simulation results in comparison with those of test, the investigation of optimal flow design for effective cooling in cabin room and finally the evaluation of thermal comforts to crew.

Analysis of Operating Characteristic of Self Excited Induction Generator with Steinmetz Connection (스타인메츠결선 자기여자 유도발전기의 운전특성 분석)

  • Kang, Sang-Su;Jwa, Chong-Keun
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.57 no.4
    • /
    • pp.383-387
    • /
    • 2008
  • This paper analyzes the operation characteristics of a self excited induction generator with Steinmetz connection. For this analysis, the symmetrical components analysis is used to obtain the related expressions and the excitation capacitance and the magnetizing reactance are determined in turn by the condition of self excitation which includes the input impedance of the generator as viewed across load terminals. Two simultaneous equations of the condition of self excitation itself are solved by using the real and imaginary function in an application software. This method is applied to simulate the operation characteristics when the generator is driven at rated speed and the specified excitation capacitor is connected across the lagging phase. The results show that better operation characteristics except generated frequency are obtained by using relatively large excitation capacitance and resistive load.

to examine of management standard by the harmonics measured and analyzed in 22.9kV Power lines (22.9kV 수용가 전력계통별 고조파 발생실태 및 관리기준 조사분석)

  • Lee Eun Chun;Shin Gang Wook;Hong Sung Taek;Hong Young Jae;Park Young Chun;Lim Jae Il
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.270-272
    • /
    • 2004
  • At the water supply field, high voltage induction motor is main facility of a load equipment. The motor is often out of order and its noise, generated heat, loss etc occurred occasionally. especially, transmission motor for flux control generates an amount of the harmonics then have a bad influence upon the electric power system. In this study, to analyze the total harmonics distortion of the water supply field receiving high voltage, the harmonics measured and analyzed using the PQA(Power quality Analyzer) according to the electric power system and electrical load and the reduction method presented.

  • PDF

Mesoscopic analysis of reinforced concrete beams

  • Tintu Shine, A.L.;Fincy, Babu;Dhileep, M.
    • Coupled systems mechanics
    • /
    • v.8 no.4
    • /
    • pp.289-298
    • /
    • 2019
  • Reinforced concrete can be considered as a heterogeneous material consisting of coarse aggregate, mortar mix and reinforcing bars. This paper presents a two-dimensional mesoscopic analysis of reinforced concrete beams using a simple two-phase mesoscopic model for concrete. The two phases of concrete, coarse aggregate and mortar mix are bonded together with reinforcement bars so that inter force transfer will occur through the material surfaces. Monte Carlo's method is used to generate the random aggregate structure using the constitutive model at mesoscale. The generated models have meshed such that there is no material discontinuity within the elements. The proposed model simulates the load-deflection behavior, crack pattern and ultimate load of reinforced concrete beams reasonably well.

A Study on the Mechanical Properties of Joints in Laser Transmission Joining of Polymers (폴리머의 레이저 투과접합 시 접합부의 기계적 성질에 관한 연구)

  • Cha, Sang-Woo;Kim, Jin-Beom;Yoon, Suk-Hwan;Na, Suck-Joo
    • Journal of Welding and Joining
    • /
    • v.25 no.2
    • /
    • pp.43-48
    • /
    • 2007
  • Laser Transmission Joining (LTJ) of plastics is a process in which light of suitable wavelength is transmitted through a transparent substrate that is in contact with an absorbing one. In this paper, LTJ is investigated by preliminary experiments from the viewpoint of mechanical engineering. To understand transmitting characteristics of each polymer substrate, transmission rate, reflection rate and absorption coefficient of polymer are measured by using a laser power-meter. Characteristics of joining in the spot welding and seam welding are investigated by measuring the fracture load. Fracture load increases in accordance to the laser power and irradiation time. However, when the laser power is over 60W and irradiation time over 4seconds, fracture load decreases. This phenomenon is probably due to heat-softening of materials. Besides, cavities are generated at a joint by evaporation of water molecules, which can be suppressed by introduction of a gap between two substrates.

Measurement of Glass-Silicon Interfacial fracture Toughness and Experimental Evaluation of Anodic Bonding Process based on the Taguchi Method (다구찌 방법에 의한 유리-실리콘 양극접합 계면의 파괴인성치 측정 및 양극접합공정 조건에 따른 접합강도 분석)

  • Kang, Tae-Goo;Cho, Young-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.6
    • /
    • pp.1187-1193
    • /
    • 2002
  • Anodic bonding process has been quantitatively evaluated based on the Taguchi analysis of the interfacial fracture toughness, measured at the interface of anodically bonded silicon-glass bimorphs. A new test specimen with a pre-inserted blade has been devised for interfacial fracture toughness measurement. A set of 81 different anodic bonding conditions has been generated based on the three different conditions for four different process parameters of bonding load, bonding temperature, anodic voltage and voltage supply time. Taguchi method has been used to reduce the number of experiments required for the bonding strength evaluation, thus obtaining nine independent cases out of the 81 possible combinations. The interfacial fracture toughness has been measured for the nine cases in the range of 0.03∼6.12 J/㎡. Among the four process parameters, the bonding temperature causes the most dominant influence to the bonding strength with the influence factor of 67.7%. The influence factors of other process parameters, such as anodic voltage and voltage supply time, bonding load, are evaluated as 18%, 12% and 2.3%, respectively. The maximum bonding strength of 7.23 J/㎡ has been achieved at the bonding temperature of 460$\^{C}$ with the bonding load of 45gf/㎠, the applied voltage of 600v and the voltage supply time of 25minites.