• 제목/요약/키워드: generalized functions

검색결과 805건 처리시간 0.026초

REPRESENTATION OF THE GENERALIZED FUNCTIONS OF GELFAND AND SHILOV

  • Jae Young Chung;Sung Jin Lee
    • 대한수학회논문집
    • /
    • 제9권3호
    • /
    • pp.607-616
    • /
    • 1994
  • I. M. Gelfand and G. E. Shilov [GS] introduced the Gelfand-Shilov spaces of type S, generalized type S and type W of test functions to investigate the uniqueness of the solutions of the Cauchy problems of partial differential equations. Using the heat kernel method Matsuzawa gave structure theorems for distributions, hyperfunctions and generalized functions in the dual space $(S^s_r)'$ of the Gelfand-Shilov space of type S in [M1, M2 and DM], respectively. Also, we gave structure theorems for ultradistributions, Fourier hyperfunctions in [CK, KCK], respectively.

  • PDF

SEPARATION AXIOMS ON BI-GENERALIZED TOPOLOGICAL SPACES

  • Ray, A. Deb;Bhowmick, Rakesh
    • 충청수학회지
    • /
    • 제27권3호
    • /
    • pp.363-379
    • /
    • 2014
  • In this paper, introducing various separation axioms on a bi-GTS, it has been observed that such separation axioms actually unify the well-known separation axioms on topological spaces. Several characterizations of such separation properties of a bi-GTS are established in terms of ${\gamma}_{{\mu}_i,{\mu}_j}$-closure operator, generalized cluster sets of functions and graph of functions.

SOME APPLICATIONS FOR GENERALIZED FRACTIONAL OPERATORS IN ANALYTIC FUNCTIONS SPACES

  • Kilicman, Adem;Abdulnaby, Zainab E.
    • Korean Journal of Mathematics
    • /
    • 제27권3호
    • /
    • pp.581-594
    • /
    • 2019
  • In this study a new generalization for operators of two parameters type of fractional in the unit disk is proposed. The fractional operators in this generalization are in the Srivastava-Owa sense. Concerning with the related applications, the generalized Gauss hypergeometric function is introduced. Further, some boundedness properties on Bloch space are also discussed.

DOUBLE INTEGRALS INVOLVING PRODUCT OF TWO GENERALIZED HYPERGEOMETRIC FUNCTIONS

  • Kim, Joohyung;Kim, Insuk
    • 호남수학학술지
    • /
    • 제43권1호
    • /
    • pp.26-34
    • /
    • 2021
  • In this paper two interesting double integrals involving product of two generalized hypergeometric functions have been evaluated in terms of gamma function. The results are derived with the help of known integrals involving hypergeometric functions recorded in the paper of Rathie et al. [6]. We also give several very interesting special cases.

EVALUATION FORMULAS OF CONDITIONAL YEH-WIENER INTEGRALS

  • Ahn, J.M.;Chang, K.S.;Kim, S.K.;Yoo, I.
    • 대한수학회보
    • /
    • 제36권4호
    • /
    • pp.809-822
    • /
    • 1999
  • In this paper, we introduce conditional Yeh-Wiener in-tegrals for generalized conditioning functions including vector-valued functions. And also we establish various evaluation formulas of conditional Yeh-Wiener integrals for generalized conditioning functions.

  • PDF

SECOND ORDER NONSMOOTH MULTIOBJECTIVE FRACTIONAL PROGRAMMING PROBLEM INVOLVING SUPPORT FUNCTIONS

  • Kharbanda, Pallavi;Agarwal, Divya;Sinha, Deepa
    • Journal of applied mathematics & informatics
    • /
    • 제31권5_6호
    • /
    • pp.835-852
    • /
    • 2013
  • In this paper, we have considered a class of constrained non-smooth multiobjective fractional programming problem involving support functions under generalized convexity. Also, second order Mond Weir type dual and Schaible type dual are discussed and various weak, strong and strict converse duality results are derived under generalized class of second order (F, ${\alpha}$, ${\rho}$, $d$)-V-type I functions. Also, we have illustrated through non-trivial examples that class of second order (F, ${\alpha}$, ${\rho}$, $d$)-V-type I functions extends the definitions of generalized convexity appeared in the literature.

ON SUFFICIENCY AND DUALITY IN MULTIOBJECTIVE SUBSET PROGRAMMING PROBLEMS INVOLVING GENERALIZED $d$-TYPE I UNIVEX FUNCTIONS

  • Jayswal, Anurag;Stancu-Minasian, I.M.
    • Journal of applied mathematics & informatics
    • /
    • 제30권1_2호
    • /
    • pp.111-125
    • /
    • 2012
  • In this paper, we introduce new classes of generalized convex n-set functions called $d$-weak strictly pseudo-quasi type-I univex, $d$-strong pseudo-quasi type-I univex and $d$-weak strictly pseudo type-I univex functions and focus our study on multiobjective subset programming problem. Sufficient optimality conditions are obtained under the assumptions of aforesaid functions. Duality results are also established for Mond-Weir and general Mond-Weir type dual problems in which the involved functions satisfy appropriate generalized $d$-type-I univexity conditions.

ANALYTIC FUNCTIONS WITH CONIC DOMAINS ASSOCIATED WITH CERTAIN GENERALIZED q-INTEGRAL OPERATOR

  • Om P. Ahuja;Asena Cetinkaya;Naveen Kumar Jain
    • 대한수학회논문집
    • /
    • 제38권4호
    • /
    • pp.1111-1126
    • /
    • 2023
  • In this paper, we define a new subclass of k-uniformly starlike functions of order γ (0 ≤ γ < 1) by using certain generalized q-integral operator. We explore geometric interpretation of the functions in this class by connecting it with conic domains. We also investigate q-sufficient coefficient condition, q-Fekete-Szegö inequalities, q-Bieberbach-De Branges type coefficient estimates and radius problem for functions in this class. We conclude this paper by introducing an analogous subclass of k-uniformly convex functions of order γ by using the generalized q-integral operator. We omit the results for this new class because they can be directly translated from the corresponding results of our main class.

SOME NEW ESTIMATES FOR EXPONENTIALLY (ħ, m)-CONVEX FUNCTIONS VIA EXTENDED GENERALIZED FRACTIONAL INTEGRAL OPERATORS

  • Rashid, Saima;Noor, Muhammad Aslam;Noor, Khalida Inayat
    • Korean Journal of Mathematics
    • /
    • 제27권4호
    • /
    • pp.843-860
    • /
    • 2019
  • In the article, we present several new Hermite-Hadamard and Hermite-Hadamard-Fejér type inequalities for the exponentially (ħ, m)-convex functions via an extended generalized Mittag-Leffler function. As applications, some variants for certain typ e of fractional integral operators are established and some remarkable special cases of our results are also have been obtained.