DOI QR코드

DOI QR Code

ON SUFFICIENCY AND DUALITY IN MULTIOBJECTIVE SUBSET PROGRAMMING PROBLEMS INVOLVING GENERALIZED $d$-TYPE I UNIVEX FUNCTIONS

  • Jayswal, Anurag (Department of Applied Mathematics, Indian School of Mines) ;
  • Stancu-Minasian, I.M. (Institute of Mathematical Statistics and Applied Mathematics of the Romanian Academy)
  • Received : 2011.03.24
  • Accepted : 2011.06.20
  • Published : 2012.01.30

Abstract

In this paper, we introduce new classes of generalized convex n-set functions called $d$-weak strictly pseudo-quasi type-I univex, $d$-strong pseudo-quasi type-I univex and $d$-weak strictly pseudo type-I univex functions and focus our study on multiobjective subset programming problem. Sufficient optimality conditions are obtained under the assumptions of aforesaid functions. Duality results are also established for Mond-Weir and general Mond-Weir type dual problems in which the involved functions satisfy appropriate generalized $d$-type-I univexity conditions.

Keywords

References

  1. B. Aghezzaf and M. Hachimi, Generalized invexity and duality in multiobjective programming problems, J. Global Optim. 18 (2000)1, 91-101. https://doi.org/10.1023/A:1008321026317
  2. I. Ahmad and S. Sharma, Suffciency in multiobjective subset programming involving generalized type-I functions, J. Global Optim. 39 (2007)3, 473-481. https://doi.org/10.1007/s10898-007-9150-4
  3. C.R. Bector, S.K. Suneja and S. Gupta, Univex functions and univex nonlinear programming, In: Proceedings of the Administrative Sciences Association of Canada, (1992) 115-124.
  4. C.R. Bector and M. Singh, Duality for multiobjective B-vex programming involving n-set functions, J. Math. Anal. Appl. 202 (1996)3, 701-726. https://doi.org/10.1006/jmaa.1996.0343
  5. D. Begis and R. Glowinski, Application de la methode des elements finis a 1'approximation d'un probleme de domaine optimal, Methodes des resolution des problemes approches, Appl. Math. Optim. 2 (1975)2, 130-169. https://doi.org/10.1007/BF01447854
  6. J. Cea, A. Gioan and J. Michel, Quelques resultats sur 1'identification de domaines, Calcolo. 10 (1973)3-4, 207-232. https://doi.org/10.1007/BF02575843
  7. H.W. Corley and S.D. Roberts, A partitioning problem with applications in regional design, Operations Res. 20 (1972), 1010-1019. https://doi.org/10.1287/opre.20.5.1010
  8. H.W. Corley and S.D. Roberts, Duality relationships for a partitioning problem, SIAM J. Appl. Math. 23 (1972), 490-494. https://doi.org/10.1137/0123052
  9. J.H. Chou, W.S. Hsia and T.Y. Lee, On multiple objective programming problems with set functions, J. Math. Anal. Appl. 105 (1985)2, 383-394. https://doi.org/10.1016/0022-247X(85)90055-1
  10. H.W. Corely, Optimization theory for n-set functions, J. Math. Anal. Appl. 127 (1987)1, 193-205. https://doi.org/10.1016/0022-247X(87)90151-X
  11. G. Dantzig and A.Wald, On the fundamental lemma of Neyman and Pearson, Ann. Math. Statistics 22 (1951), 87-93. https://doi.org/10.1214/aoms/1177729695
  12. M.A. Hanson and B. Mond, Necessary and sufficient conditions in constrained optimization, Math. Programming 37 (1987)1, 51-58. https://doi.org/10.1007/BF02591683
  13. A. Jayswal and R. Kumar, Some nondifferentiable multiobjective programming under generalized d-V -type-I univexity, J. Comput. Appl. Math. 229 (2009)1, 175-182. https://doi.org/10.1016/j.cam.2008.10.023
  14. R.N. Kaul, S.K. Suneja and M.K. Srivastava, Optimality criteria and duality in multiple-objective optimization involving generalized invexity, J. Optim. Theory Appl. 80 (1994)3, 465-482. https://doi.org/10.1007/BF02207775
  15. H.C. Lai and L.J. Lin, Optimality for set functions with values in ordered vector spaces, J. Optim. Theory Appl. 63 (1989)3, 371-389. https://doi.org/10.1007/BF00939803
  16. L.J. Lin, Optimality of differentiable vector-valued n-set functions, J. Math. Anal. Appl. 149 (1990)1, 255-270. https://doi.org/10.1016/0022-247X(90)90299-U
  17. L.J. Lin, On the optimality condition of vector-valued n-set functions, J. Math. Anal. Appl. 161 (1991)2, 367-387. https://doi.org/10.1016/0022-247X(91)90337-Y
  18. L.J. Lin, Duality theorems of vector-valued n-set functions, Comput. Math. Appl. 21 (1991)11-12, 165-175 https://doi.org/10.1016/0898-1221(91)90118-N
  19. S.K. Mishra, S.Y. Wang, K.K. Lai and J. Shi, New generalized invexity for duality in multiobjective programming problems involving N-set functions, In Generalized Convexity, Generalized Monotonicity and Applications, pp. 321-339 Edited by Andrew Eberhard, Nicolas Hadjisawas, D. T. Luc, Nonconvex Optim. Appl., 77, Springer, New York (2005).
  20. J. Neyman and E.S. Pearson, On the problem of the most efficient tests of statistical hypotheses, Philos. Trans. Soc. Lond. Ser. 231 (1933), 289-337. https://doi.org/10.1098/rsta.1933.0009
  21. V. Preda and I.M. Stancu-Minasian, Optimality and Wolfe duality for multiobjective programming problems involving n-set functions, In: Konnov, I.V. Luc, D.T. Rubinov, A.M.(eds.) Generalized Convexity and Generalized Monotonicity (Karlovassi, 1999), Lecture Notes in Econom. and Math. Systems, vol. 502, pp. 349-361. Springer-Verlag, Berlin (2001).
  22. V. Preda, I.M. Stancu-Minasian and E. Koller, Optimality and duality for multiobjective programming problems involving generalized d-type-I and related n-set functions, J. Math. Anal. Appl. 283 (2003)1, 114-128. https://doi.org/10.1016/S0022-247X(03)00242-7
  23. V. Preda, I. M. Stancu-Minasian, M. Beldiman and A.M. Stancu, Generalized V -univexity type-I for multiobjective programming with n-set functions, J.Global Optim. 44 (2009)1, 131-148. https://doi.org/10.1007/s10898-008-9315-9
  24. J.T. Robert and Morris: Optimal constrained selection of a measurable subset, J. Math. Anal. Appl. 70 (1979)2, 546-562. https://doi.org/10.1016/0022-247X(79)90064-7
  25. N.G. Rueda and M.A. Hanson, Optimality criteria in mathematical programming involving generalized invexity, J. Math. Anal. Appl. 130 (1988)2, 375-385. https://doi.org/10.1016/0022-247X(88)90313-7
  26. Y.L. Ye, D-invexity and optimality conditions, J. Math. Anal. Appl. 162 (1991)1, 242-249. https://doi.org/10.1016/0022-247X(91)90190-B
  27. G.J. Zalmai, Suffciency criteria and duality for nonlinear programs involving n-set functions, J. Math. Anal. Appl. 149 (1990)2, 322-338. https://doi.org/10.1016/0022-247X(90)90045-H
  28. G.J. Zalmai, Optimality conditions and duality for multiobjective measurable subset selection problems, Optimization 22 (1990)2, 221-238. https://doi.org/10.1080/02331939108843661