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ON SUFFICIENCY AND DUALITY IN MULTIOBJECTIVE

SUBSET PROGRAMMING PROBLEMS INVOLVING

GENERALIZED d-TYPE I UNIVEX FUNCTIONS†

ANURAG JAYSWAL∗ AND I. M. STANCU-MINASIAN

Abstract. In this paper, we introduce new classes of generalized convex
n-set functions called d-weak strictly pseudo-quasi type-I univex, d-strong
pseudo-quasi type-I univex and d-weak strictly pseudo type-I univex func-
tions and focus our study on multiobjective subset programming prob-
lem. Sufficient optimality conditions are obtained under the assumptions
of aforesaid functions. Duality results are also established for Mond-Weir
and general Mond-Weir type dual problems in which the involved functions
satisfy appropriate generalized d-type-I univexity conditions.
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1. Introduction

The analysis of optimization problems with set functions has been the subject
of many papers and have various interesting applications in fluid flow (Begis and
Glowinski [5]), electrical insulator design (Céa et al. [6]), regional design (Corley
and Roberts [7, 8]), statistics (Dantzig and Wald [11] and Neyman and Pearson
[20]).

The concept of optimizing n-set functions was initially developed by Morris
[24] whose results are confined only to set functions of a single set. Corley [10]
gave the concept of derivative of a real-valued n-set function and generalized the
results of Morris [24] to n-set functions and established optimality conditions
and Lagrangian duality.
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Several authors have shown their interest to established sufficient optimality
conditions for multiobjective subset programming problem by applying extra
assumptions, such as convexity, generalized convexity, invexity and generalized
invexity [4, 9, 15-18, 21, 27]. Furthermore, by using the sufficient optimality
conditions, various dual models have been formulated and duality results have
been established.

Hanson and Mond [12] defined two new classes of functions, called type I
and type II function. The concept of type I and type II functions was further
generalized to pseudo type I and quasi type I functions by Rueda and Hanson
[25], and to pseudo-quasi type I, quasi-pseudo type I and strictly quasi-pseudo
type I functions by Kaul et al. [14]. Later, Aghezzaf and Hachimi [1] introduced
generalized type I vector-valued functions, which are different from those defined
in Kaul et al. [14].

Ye [26] introduced d-invexity by replacing derivative with directional deriv-
ative, and developed necessary conditions for weak efficiency for a nondiffer-
entiable multiobjective programming problem assuming the directional deriva-
tives of objective and active constraints functions to be convex. Preda et al.
[22] established optimality and duality results for a multiobjective programming
problem involving n-set functions under the assumptions of d-type I, d-pseudo
type I and d-quasi type I functions. Mishra et al. [19] introduced four types of
generalized convexity for an n-set function and discuss optimality and duality
for a multiobjective programming problem involving n-set functions. Ahmad
and Sharma [2] established sufficient optimality conditions for a multiobjective
subset programming problem under generalized (F, α, ρ, d)-type I functions.

Bector et al. [3] introduced some classes of univex functions by relaxing the
definition of an invex function. Optimality and duality results are also obtained
for a nonlinear multiobjective programming problem in [3].

Jayswal and Kumar [13] introduced new classes of generalized convex func-
tions called d-V -type-I univex and obtained Karush-Kuhn-Tucker-type sufficient
optimality conditions and Mond-Weir type duality results for nondifferentiable
multiobjective programming problem. Recently, Preda et al. [23] introduced
generalized (ρ, ρ́)-V -univex functions and focus his study on optimality condi-
tions and generalized Mond-Weir duality for multiobjective programming in-
volving n-set functions which satisfy appropriate generalized univexity V -type-I
conditions.

We now consider the following nonlinear multiobjective subset programming
problem:

(P) minimize F (S) =
[
F1(S), F2(S), ..., Fp(S)

]

subject to Gj(S) 5 0, j ∈ M, S = (S1, S2, ..., Sn) ∈ An,

where An is the n-fold product of σ-algebra A of subsets of a given set X,
Fi, i ∈ P = {1, 2, ..., p} and Gj , j ∈ M = {1, 2, ...,m} are real-valued functions
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defined on An. Let X0 = {S ∈ An : Gj(S) 5 0, j ∈ M} be the set of all feasible
solutions to (P).

In this paper, we introduce new classes of generalized d-weak strictly pseudo-
quasi type-I univex, d-strong pseudo-quasi type-I univex and d-weak strictly
pseudo type-I univex functions in Section 2. Based upon these functions, suffi-
cient optimality conditions are discussed for the multiobjective subset program-
ming problem (P) in Section 3. Duality results are also obtained in the setting
of Mond-Weir and general Mond-Weir type dual in Section 4 and 5 respectively.
Furthermore, the results obtained in this paper extend and generalized the re-
sults of Jayswal and Kumar [13] to the class of n-set functions and the results
of Mishra et al. [19] to the class of n-set univex functions.

2. Preliminaries

The following conventions for vectors in Rn will be followed throughout this
paper:

x = y ⇔ xk = yk, k = 1, 2, . . . , n;

x ≥ y ⇔ xk ≥ yk, k = 1, 2, . . . , n and x 6= y;

x > y ⇔ xk > yk, k = 1, 2, . . . , n.

We write x ∈ Rn
+ iff x = 0. Let (X,A, µ) be a finite atomless measure space

with L1(X,A, µ) separable and let d be the pseudometric on An defined by

d(S, T ) =
[ n∑

k=1

µ2(Sk∆Tk)
]1/2

, S = (S1, S2, ..., Sn) ∈ An, T = (T1, T2, ..., Tn) ∈ An,

where ∆ denotes symmetric difference; thus, (An, d) is a pseudometric space.
For h ∈ L1(X,A, µ) and Z ∈ A with characteristic function χZ ∈ L∞(X,A, µ),
the integral

∫
Z
hdµ will be denoted by 〈h, χZ〉.

We next define the notions of differentiability for n-set functions. This was
originally introduced by Morris [24] for set functions, and subsequently extended
by Corley [10] to n-set functions.

A function φ : A → R is said to be differentiable at S0 ∈ A if there exist
Dφ(S0) ∈ L1(X,A, µ), called the derivative of φ at S0 and ψ : A×A → R such
that for each S ∈ A,

φ(S) = φ(S0) +
〈
Dφ(S0), IS − IS0

〉
+ ψ(S, S0),

where ψ(S, S0) is o(d(S, S0)), that is, lim
d(S,S0)→0

ψ(S,S0)
d(S,S0) = 0.

A function F : An → R is said to have a partial derivative at S0 = (S0
1 , S

0
2 , ..., S

0
n)

with respect to its pth argument if the function

φ(Sk) = F
(
S0
1 , ..., S

0
k−1, Sk, S

0
k+1, ..., S

0
n

)

has derivative Dφ(S0
k) and we define DkF (S0) = Dφ(S0

k). If DkF (S0), k =
1, 2, ..., n, all exist, then we put DF (S0) = (D1F (S0), D2F (S0), ..., DnF (S0)).
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A function F : An → R is said to be differentiable at S0 if there exist DF (S0)
and ψ : An ×An → R such that

F (S) = F (S0) +

n∑

k=1

〈
DkF (S0), ISk

− IS0
k

〉
+ ψ(S, S0),

where ψ(S, S0) is o(d(S, S0)) for all S ∈ An.

Definition 2.1. A feasible solution S0 to (P) is said to be an efficient solution
to (P), if there exists no other feasible solution S to (P) such that

F (S) ≤ F (S0).

Definition 2.2. A feasible solution S0 to (P) is said to be a weakly efficient
solution to (P), if there exists no other feasible solution S (S 6= S0) to (P) such
that

F (S) < F (S0).

Along the lines of Jayswal and Kumar [13], we now define the following classes
of n-set functions, called d-weak strictly pseudo-quasi type-I univex, d-strong
pseudo-quasi type-I univex and d-weak strictly pseudo type-I univex functions.

Definition 2.3. We say that the pair of functions (F,G) is d-weak strictly
pseudo-quasi type-I univex at S0 ∈ An with respect to b0, b1, φ0, φ1,
γ = (γ1, γ2, ..., γp), δ = (δ1, δ2, ..., δp) and η = (η1, η2, ..., ηn), if there exist η :
An × An → Rn, γi : An × An → R+ \ {0}, i = 1, 2, ..., p, δj : An × An →
R+\{0}, j = 1, 2, ...,m, nonnegative functions b0 and b1, also defined on An×An,
and φ0 : R → R, φ1 : R → R, such that for all S ∈ X0, the implications

b0(S, S
0)φ0

[ p∑

i=1

γi(S, S
0)Fi(S)−

p∑

i=1

γi(S, S
0)Fi(S

0)
]
≤ 0

⇒
p∑

i=1

n∑

k=1

ηk(S, S
0)

〈
DkFi(S

0), ISk
− IS0

k

〉
< 0,

−b1(S, S
0)φ1

[ m∑

j=1

δj(S, S
0)Gj(S

0)
]
5 0

⇒
m∑

j=1

n∑

k=1

ηk(S, S
0)

〈
DkGj(S

0), ISk
− IS0

k

〉
5 0,

both hold.

Definition 2.4. We say that the pair of functions (F,G) is d-strong pseudo-quasi
type-I univex at S0 ∈ An with respect to b0, b1, φ0, φ1, γ = (γ1, γ2, ..., γp), δ =
(δ1, δ2, ..., δp) and η = (η1, η2, ..., ηn), if there exist η : An × An → Rn, γi :
An × An → R+ \ {0}, i = 1, 2, ..., p, δj : An × An → R+ \ {0}, j = 1, 2, ...,m,
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nonnegative functions b0 and b1, also defined on An ×An, and φ0 : R → R, φ1 :
R → R, such that for all S ∈ X0, the implications

b0(S, S
0)φ0

[ p∑

i=1

γi(S, S
0)Fi(S)−

p∑

i=1

γi(S, S
0)Fi(S

0)
]
≤ 0

⇒
p∑

i=1

n∑

k=1

ηk(S, S
0)

〈
DkFi(S

0), ISk
− IS0

k

〉
≤ 0,

−b1(S, S
0)φ1

[ m∑

j=1

δj(S, S
0)Gj(S

0)
]
5 0

⇒
m∑

j=1

n∑

k=1

ηk(S, S
0)

〈
DkGj(S

0), ISk
− IS0

k

〉
5 0,

both hold.

Definition 2.5. We say that the pair of functions (F,G) is d-weak strictly pseudo
type-I univex at S0 ∈ An with respect to b0, b1, φ0, φ1, γ = (γ1, γ2, ..., γp), δ =
(δ1, δ2, ..., δp) and η = (η1, η2, ..., ηn), if there exist η : An × An → Rn, γi :
An × An → R+ \ {0}, i = 1, 2, ..., p, δj : An × An → R+ \ {0}, j = 1, 2, ...,m,
nonnegative functions b0 and b1, also defined on An ×An, and φ0 : R → R, φ1 :
R → R, such that for all S ∈ X0, the implications

b0(S, S
0)φ0

[ p∑

i=1

γi(S, S
0)Fi(S)−

p∑

i=1

γi(S, S
0)Fi(S

0)
]
≤ 0

⇒
p∑

i=1

n∑

k=1

ηk(S, S
0)

〈
DkFi(S

0), ISk
− IS0

k

〉
< 0,

−b1(S, S
0)φ1

[ m∑

j=1

δj(S, S
0)Gj(S

0)
]
5 0

⇒
m∑

j=1

n∑

k=1

ηk(S, S
0)

〈
DkGj(S

0), ISk
− IS0

k

〉
< 0,

both hold.

Remark 2.1. The above definitions extend at n-set functions the concept of
weak strictly pseudo-quasi-d-V -type-I univex, strong pseudo-quasi-d-V -type-I
univex and weak strictly pseudo-d-V -type-I univex of Jayswal and Kumar [13]
as well as extended at univexity the concept of d-weak strictly-pseudoquasi-type-
I, d-strong-pseudoquasi-type-I and d-weak strictly pseudo-type-I of Mishra et al.
[19].
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3. Sufficient optimality conditions

The following theorem gives sufficient optimality conditions for a weakly ef-
ficient solution to (P) under the assumptions of generalized d-type-I univexity
introduced in Section 2.

Theorem 3.1 (Sufficient optimality conditions). Let S0 be a feasible solution
for (P). Assume that there exist λ0

i = 0, i ∈ P,
∑p

i=1 λ
0
i = 1 and µ0

j = 0, j ∈
M0 = {j ∈ M : Gj(S

0) = 0}, such that for all S ∈ An

〈
Dk(λ

0F )(S0) +Dk(µ
0G)(S0), ISk

− IS0
k

〉
= 0. (1)

Moreover, we assume that any one of the following conditions are satisfied:
(S1) λ > 0 and (F, µG) is d-strong pseudo-quasi type-I univex at S0 with respect
to b0, b1, φ0, φ1, γ = (γ1, γ2, ..., γp), δ = (δ1, δ2, ..., δp) and η = (η1, η2, ..., ηn);
(S2) (F, µG) is d-weak strictly pseudo-quasi type-I univex at S0 with respect to
b0, b1, φ0, φ1, γ = (γ1, γ2, ..., γp), δ = (δ1, δ2, ..., δp) and η = (η1, η2, ..., ηn);
(S3) (F, µG) is d-weak strictly pseudo type-I univex at S0 with respect to b0, b1,
φ0, φ1, γ = (γ1, γ2, ..., γp), δ = (δ1, δ2, ..., δp) and η = (η1, η2, ..., ηn);
with η satisfying ηTα < 0 ⇒ αk < 0 for at least one k ∈ {1, 2, ..., n}.
Further, suppose that for r ∈ R, we have

r ≤ 0 ⇒ φ0(r) ≤ 0, r 5 0 ⇒ φ1(r) 5 0 (2)

and

b0(S, S
0) > 0, b1(S, S

0) = 0, ∀S ∈ X0. (3)

Then S0 is a weakly efficient solution for (P).

Proof. Suppose contrary to the result that S0 is not a weakly efficient solution
of (P). Then there exists a feasible solution S(S 6= S0) such that

Fi(S) < Fi(S
0) for any i ∈ P.

If hypothesis (S1) holds then, from λ0
i = 0, i ∈ P, with

∑p
i=1 λ

0
i = 1 and the

positivity of γi(S, S
0), we get

p∑

i=1

γi(S, S
0)λ0

iFi(S) <

p∑

i=1

γi(S, S
0)λ0

iFi(S
0).

By (2) and (3) and the above inequality, we have

b0(S, S
0)φ0

[ p∑

i=1

γi(S, S
0)λ0

iFi(S)−
p∑

i=1

γi(S, S
0)λ0

iFi(S
0)
]
< 0. (4)

By the feasibility of S0 and Gj(S
0) = 0, ∀j ∈ M0, we have

−
∑

j∈M0

δj(S, S
0)µ0

jGj(S
0) 5 0.



On sufficiency and duality... involving generalized d-type I univex functions 117

By (2) and (3) and the above inequality, we have

−b1(S, S
0)φ1

[ ∑

j∈M0

δj(S, S
0)µ0

jGj(S
0)
]
5 0. (5)

By inequality (4) and (5) and hypothesis (S1), we have
p∑

i=1

n∑

k=1

λ0
i ηk(S, S

0)
〈
DkFi(S

0), ISk
− IS0

k

〉
< 0

and
∑

j∈M0

n∑

k=1

µ0
jηk(S, S

0)
〈
DkGj(S

0), ISk
− IS0

k

〉
5 0.

The above inequalities together yield
p∑

i=1

n∑

k=1

λ0
i ηk(S, S

0)
〈
DkFi(S

0), ISk
− IS0

k

〉
+

∑

j∈M0

n∑

k=1

µ0
jηk(S, S

0)
〈
DkGj(S

0), ISk
− IS0

k

〉
< 0.

That is,
n∑

k=1

ηk(S, S
0)

〈
Dk(λ

0F )(S0) +Dk(µ
0G)(S0), ISk

− IS0
k

〉
< 0.

From the assumption that ηTα < 0 ⇒ αk < 0 for at least one k ∈ {1, 2, ..., n},
we obtain 〈

Dk(λ
0F )(S0) +Dk(µ

0G)(S0), ISk
− IS0

k

〉
< 0,

which contradicts (1).
By hypothesis (S2) from (4), (5) and similar to proof of hypothesis (S1), we get〈

Dk(λ
0F )(S0) +Dk(µ

0G)(S0), ISk
− IS0

k

〉
< 0,

again a contradiction to (1).
By hypothesis (S3) from (4) and (5), we get

p∑

i=1

n∑

k=1

λ0
i ηk(S, S

0)
〈
DkFi(S

0), ISk
− IS0

k

〉
< 0

and
∑

j∈M0

n∑

k=1

µ0
jηk(S, S

0)
〈
DkGj(S

0), ISk
− IS0

k

〉
< 0.

By these two inequalities, we get
p∑

i=1

n∑

k=1

λ0
i ηk(S, S

0)
〈
DkFi(S

0), ISk
− IS0

k

〉

+
∑

j∈M0

n∑

k=1

µ0
jηk(S, S

0)
〈
DkGj(S

0), ISk
− IS0

k

〉
< 0.

Rest of the proof is similar to hypothesis (S1). This completes the proof. ¤
The following results from Zalmai [28] will be needed in the sequel.
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Definition 3.1. A feasible solution S0 is said to be a regular feasible solution
if there exists Ŝ ∈ An such that

Gj(S
0) +

n∑

k=1

〈
DkGj(S

0), IŜk
− IS0

k

〉
< 0, j ∈ M.

Lemma 3.1 ([28], Theorem 3.2). Let S0 be a regular efficient (or weakly effi-
cient) solution to (P) and assume that Fi, i ∈ P and Gj , j ∈ M are differentiable
at S0. Then there exist λ ∈ Rp

+,
∑p

i=1 λi = 1, and µ ∈ Rm
+ such that

n∑

k=1

〈
p∑

i=1

λiDkFi(S
0) +

m∑

j=1

µjDkGj(S
0), ISk

− IS0
k

〉
= 0, for all S ∈ An,

µjGj(S
0) = 0, j ∈ M.

4. Mond-Weir Duality

In this section, we associate the problem (P) with the following Mond-Weir
dual problem (MD):

(MD) maximize F (T )

subject to

〈Dk(λF )(T ) +Dk(µG)(T ), ISk
− ITk

〉 = 0, ∀ S ∈ An, (6)
m∑

j=1

µjGj(T ) = 0, (7)

λi = 0, i ∈ P and

p∑

i=1

λi = 1, (8)

µj = 0, j ∈ M and T ∈ An. (9)

Theorem 4.1 (Weak duality). Let S and (T, λ, µ) be feasible solutions to (P)
and (MD), respectively. Moreover, we assume that any one of the following con-
ditions holds:
(WD1) λ > 0 and (F, µG) is d-strong pseudo-quasi type-I univex at T with re-
spect to b0, b1, φ0, φ1, γ = (γ1, γ2, ..., γp), δ = (δ1, δ2, ..., δp) and η = (η1, η2, ..., ηn);
(WD2) (F, µG) is d-weak strictly pseudo-quasi type-I univex at T with respect to
b0, b1, φ0, φ1, γ = (γ1, γ2, ..., γp), δ = (δ1, δ2, ..., δp) and η = (η1, η2, ..., ηn);
(WD3) (F, µG) is d-weak strictly pseudo type-I univex at T with respect to
b0, b1, φ0, φ1, γ = (γ1, γ2, ..., γp), δ = (δ1, δ2, ..., δp) and η = (η1, η2, ..., ηn);
with η satisfying ηTα < 0 ⇒ αk < 0 for at least one k ∈ {1, 2, ..., n}.
Further, suppose that for r ∈ R, we have

r ≤ 0 ⇒ φ0(r) ≤ 0, r 5 0 ⇒ φ1(r) 5 0 (10)
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and
b0(S, T ) > 0, b1(S, T ) = 0,∀S ∈ X0. (11)

Then the following cannot hold:

F (S) ≤ F (T ).

Proof. Suppose contrary to the result that, i.e.

F (S) ≤ F (T ). (12)

Since γi(S, T ) > 0, (12) imply that
p∑

i=1

γi(S, T )Fi(S) ≤
p∑

i=1

γi(S, T )Fi(T ).

By (10) and (11) and the above inequality, we have

b0(S, T )φ0

[ p∑

i=1

γi(S, T )Fi(S)−
p∑

i=1

γi(S, T )Fi(T )
]
≤ 0. (13)

By the feasibility of (T, λ, µ) for (MD), we have

−
m∑

j=1

µjGj(T ) 5 0. (14)

Since δj(S, T ) > 0, (14) implies that

−
m∑

j=1

δj(S, T )µjGj(T ) 5 0.

By (10) and (11) and the above inequality, we have

−b1(S, T )φ1

[ m∑

j=1

δj(S, T )µjGj(T )
]
5 0. (15)

By inequality (13) and (15) and hypothesis (WD1), we have
p∑

i=1

n∑

k=1

ηk(S, T ) 〈DkFi(T ), ISk
− ITk

〉 ≤ 0

and

m∑

j=1

n∑

k=1

µjηk(S, T ) 〈DkGj(T ), ISk
− ITk

〉 5 0.

Since λ > 0, the above two inequalities imply
n∑

k=1

ηk(S, T ) 〈Dk(λF )(T ), ISk
− ITk

〉 < 0

and

n∑

k=1

ηk(S, T ) 〈Dk(µG)(T ), ISk
− ITk

〉 5 0.
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The above two inequalities together yield
n∑

k=1

ηk(S, T ) 〈Dk(λF )(T ) +Dk(µG)(T ), ISk
− ITk

〉 < 0.

From the assumption that ηTα < 0 ⇒ αk < 0 for at least one k ∈ {1, 2, ..., n},
we obtain

〈Dk(λF )(T ) +Dk(µG)(T ), ISk
− ITk

〉 < 0, (16)

which contradicts (6).
By hypothesis (WD2) from (13) and (15) imply

p∑

i=1

n∑

k=1

λiηk(S, T ) 〈DkFi(T ), ISk
− ITk

〉 < 0

and

m∑

j=1

n∑

k=1

µjηk(S, T ) 〈DkGj(T ), ISk
− ITk

〉 5 0.

Since λ = 0, and similar to proof of hypothesis (WD1), the above two inequalities
imply (16), again a contradiction to (6).
By hypothesis (WD3) from (13) and (15) imply

p∑

i=1

n∑

k=1

λiηk(S, T ) 〈DkFi(T ), ISk
− ITk

〉 < 0

and

m∑

j=1

n∑

k=1

µjηk(S, T ) 〈DkGj(T ), ISk
− ITk

〉 < 0.

Since λ = 0, and similar to proof of hypothesis (WD1), the above two inequalities
imply (16), again a contradiction to (6). This completes the proof. ¤
Theorem 4.2 (Strong duality). Let S0 be a regular weakly efficient solution
to (P). Then there exist λ0 ∈ Rp,

∑p
i=1 λ

0
i = 1 and µ0 ∈ Rm , such that

(S0, λ0, µ0) is a feasible solution to (MD) and the values of the objective functions
of (P) and (MD) are equal at S0 and (S0, λ0, µ0), respectively. Furthermore, if
the conditions of weak duality Theorem 4.1 also hold, for each feasible solution
(T, λ, µ) to (MD), then (S0, λ0, µ0) is a weakly efficient solution to (MD).

Proof. Using Lemma 3.1 we obtain that there exist λ0
i = 0, i ∈ P with

∑p
i=1 λ

0
i =

1 and µ0
j = 0, j ∈ M such that (S0, λ0, µ0) is feasible for (MD) and the values of

the objective functions of (P) and (MD) are equal. The last part follows directly
from Theorem 4.1. ¤

5. Generalized Mond-Weir Duality

In this section, we associate the problem (P) with the following generalized
Mond-Weir dual problem (GMD):

(GMD) maximize F (T ) +
∑

j∈J0
µjGj(T )e
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subject to

〈Dk(λF )(T ) +Dk(µG)(T ), ISk
− ITk

〉 = 0, ∀ S ∈ An, (17)
∑

j∈Jα

µjGj(T ) = 0 for 1 5 α 5 r, (18)

λ = 0, µ = 0 and

p∑

i=1

λi = 1, (19)

where e = (1, 1, ..., 1) ∈ Rp and Jα, 0 5 α 5 r is a partition of M , with
Js ∩ Jt = φ for s 6= t and ∪r

s=0Js = M .

Theorem 5.1 (Weak duality). Let S and (T, λ, µ) be feasible solutions to (P)
and (GMD), respectively. Moreover, we assume that any one of the following
conditions holds:

(GWD1) λ > 0 and
(
F (.)+

∑
j∈J0

µjGj(.)e,
∑

j∈Jα
µjGj(.)

)
is d-strong pseudo-

quasi type-I univex at T with respect to b0, b1, φ0, φ1, γ = (γ1, γ2, ..., γp), δ =
(δ1, δ2, ..., δp) and η = (η1, η2, ..., ηn) for any α, 1 5 α 5 r;

(GWD2)
(
F (.)+

∑
j∈J0

µjGj(.)e,
∑

j∈Jα
µjGj(.)

)
is d-weak strictly pseudo-quasi

type-I univex at T with respect to b0, b1, φ0, φ1, γ = (γ1, γ2, ..., γp), δ = (δ1, δ2, ..., δp)
and η = (η1, η2, ..., ηn) for any α, 1 5 α 5 r;

(GWD3)
(
F (.)+

∑
j∈J0

µjGj(.)e,
∑

j∈Jα
µjGj(.)

)
is d-weak strictly pseudo type-

I nivex at T with respect to b0, b1, φ0, φ1, γ = (γ1, γ2, ..., γp), δ = (δ1, δ2, ..., δp) and
η = (η1, η2, ..., ηn) for any α, 1 5 α 5 r;
with η satisfying ηTα < 0 ⇒ αk < 0 for at least one k ∈ {1, 2, ..., n}.
Further, suppose that for r ∈ R, we have

r ≤ 0 ⇒ φ0(r) ≤ 0, r 5 0 ⇒ φ1(r) 5 0 (20)

and

b0(S, T ) > 0, b1(S, T ) = 0,∀S ∈ X0. (21)

Then the following cannot hold:

F (S) ≤ F (T ) +
∑

j∈J0

µjGj(T )e.

Proof. Suppose contrary to the result that, i.e.

F (S) ≤ F (T ) +
∑

j∈J0

µjGj(T )e.

By the feasibility of S and µ = 0, we have

F (S) +
∑

j∈J0

µjGj(S)e ≤ F (T ) +
∑

j∈J0

µjGj(T )e. (22)
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Since γi(S, T ) > 0, (22) imply that

p∑

i=1

γi(S, T )
(
Fi(S) +

∑

j∈J0

µjGj(S)
)
≤

p∑

i=1

γi(S, T )
(
Fi(T ) +

∑

j∈J0

µjGj(T )
)
.

By (20) and (21) and the above inequality, we have

b0(S, T )φ0

[ p∑

i=1

γi(S, T )
(
Fi(S) +

∑

j∈J0

µjGj(S)
)

−
p∑

i=1

γi(S, T )
(
Fi(T ) +

∑

j∈J0

µjGj(T )
)]

≤ 0.

(23)

By the feasibility of (T, λ, µ) for (GMD), we have

−
∑

j∈Jα

µjGj(T ) 5 0, for 1 5 α 5 r. (24)

Since δj(S, T ) > 0, (24) implies that

−
∑

j∈Jα

δj(S, T )µjGj(T ) 5 0.

By (20) and (21) and the above inequality, we have

−b1(S, T )φ1

[ ∑

j∈Jα

δj(S, T )µjGj(T )
]
5 0. (25)

By inequality (23) and (25) and hypothesis (GWD1), we have

p∑

i=1

n∑

k=1

ηk(S, T )

〈
Dk

(
Fi(T ) +

∑

j∈J0

µjGj(T )
)
, ISk

− ITk

〉
≤ 0

and
∑

j∈Jα

n∑

k=1

µjηk(S, T ) 〈DkGj(T ), ISk
− ITk

〉 5 0, 1 5 α 5 r.

Since λ > 0, the above two inequalities together imply

n∑

k=1

ηk(S, T )

〈
Dk(λF )(T ) +

r∑
α=0

(µjαGjα)(T ), ISk
− ITk

〉
< 0. (26)

Since J0, J1, ..., Jr are partitions of M , (26) is equivalent to

n∑

k=1

ηk(S, T ) 〈Dk(λF )(T ) +Dk(µG)(T ), ISk
− ITk

〉 < 0.

From the assumption that ηTα < 0 ⇒ αk < 0 for at least one k ∈ {1, 2, ..., n},
we obtain

〈Dk(λF )(T ) +Dk(µG)(T ), ISk
− ITk

〉 < 0, (27)
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which contradicts (17).
By hypothesis (GWD2) from (23) and (25) imply

p∑

i=1

n∑

k=1

ηk(S, T )

〈
Dk

(
Fi(T ) +

∑

j∈J0

µjGj(T )
)
, ISk

− ITk

〉
< 0

and
∑

j∈Jα

n∑

k=1

µjηk(S, T ) 〈DkGj(T ), ISk
− ITk

〉 5 0, 1 5 α 5 r.

Since λ = 0, and similar to proof of hypothesis (GWD1), the above two inequal-
ities imply (27), again a contradiction to (17).
By hypothesis (GWD3) from (23) and (25) imply

p∑

i=1

n∑

k=1

ηk(S, T )

〈
Dk

(
Fi(T ) +

∑

j∈J0

µjGj(T )
)
, ISk

− ITk

〉
< 0

and
∑

j∈Jα

n∑

k=1

µjηk(S, T ) 〈DkGj(T ), ISk
− ITk

〉 < 0, 1 5 α 5 r.

Since λ = 0, and similar to proof of hypothesis (GWD1), the above two inequal-
ities imply (27), again a contradiction to (17). This completes the proof. ¤

Theorem 5.2 (Strong duality). Let S0 be a regular weakly efficient solution
to (P). Then there exist λ0 ∈ Rp,

∑p
i=1 λ

0
i = 1 and µ0 ∈ Rm, such that

(S0, λ0, µ0) is a feasible solution to (GMD) and µJ0GJ0(S
0) = 0, and the values

of the objective functions of (P) and (GMD) are equal at S0 and (S0, λ0, µ0),
respectively. Furthermore, if the conditions of weak duality Theorem 5.1 also
hold, for each feasible solution (T, λ, µ) to (GMD), then (S0, λ0, µ0) is a weakly
efficient solution to (GMD).

Proof. The proof of this theorem follows the lines of the proof of Theorem 4.2
in the light of Theorem 5.1. ¤

6. Conclusion

The generalizations of invexity for multiobjective subset programming prob-
lem have been subject of many papers. In this paper, we introduced new classes
of generalized d-type-I univex functions and established sufficient optimality con-
ditions under various generalized d-type I univexity assumptions. Furthermore,
the duality theorems in the setting of Mond-Weir and general Mond-Weir type
dual are also presented. The obtained results in this paper extend and gen-
eralized the previously known results for multiobjective subset programming
problem in the literature (for instance the papers [13] and [19]).
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