• Title/Summary/Keyword: generalized convex space

Search Result 55, Processing Time 0.019 seconds

FIXED POINT THEOREMS ON GENERALIZED CONVEX SPACES

  • Kim, Hoon-Joo
    • Journal of the Korean Mathematical Society
    • /
    • v.35 no.2
    • /
    • pp.491-502
    • /
    • 1998
  • We obtain new fixed point theorems on maps defined on "locally G-convex" subsets of a generalized convex spaces. Our first theorem is a Schauder-Tychonoff type generalization of the Brouwer fixed point theorem for a G-convex space, and the second main result is a fixed point theorem for the Kakutani maps. Our results extend many known generalizations of the Brouwer theorem, and are based on the Knaster-Kuratowski-Mazurkiewicz theorem. From these results, we deduce new results on collectively fixed points, intersection theorems for sets with convex sections and quasi-equilibrium theorems.

  • PDF

FIXED POINTS OF BETTER ADMISSIBLE MAPS ON GENERALIZED CONVEX SPACES

  • Park, Se-Hie
    • Journal of the Korean Mathematical Society
    • /
    • v.37 no.6
    • /
    • pp.885-899
    • /
    • 2000
  • We obtain generalized versions of the Fan-Browder fixed point theorem for G-convex spaces. We define the class B of better admissible multimaps on G-convex spaces and show that any closed compact map in b fro ma locally G-convex uniform space into itself has a fixed point.

  • PDF

GENERALIZATIONS OF THE NASH EQUILIBRIUM THEOREM ON GENERALIZED CONVEX SPACES

  • Park, Se-Hie
    • Journal of the Korean Mathematical Society
    • /
    • v.38 no.4
    • /
    • pp.697-709
    • /
    • 2001
  • Generalized forms of the von neumann-Sion type minimax theorem, the Fan-Ma intersection theorem, the Fan-a type analytic alternative, and the Nash-Ma equilibrium theorem hold for generalized convex spaces without having any linear structure.

  • PDF

FIXED POINT THEOREMS, SECTION PROPERTIES AND MINIMAX INEQUALITIES ON K-G-CONVEX SPACES

  • Balaj, Mircea
    • Journal of the Korean Mathematical Society
    • /
    • v.39 no.3
    • /
    • pp.387-395
    • /
    • 2002
  • In [11] Kim obtained fixed point theorems for maps defined on some “locally G-convex”subsets of a generalized convex space. Theorem 2 in Kim's article determines us to introduce, in this paper, the notion of K-G-convex space. In this framework we obtain fixed point theorems, section properties and minimax inequalities.

COLLECTIVE FIXED POINTS FOR GENERALIZED CONDENSING MAPS IN ABSTRACT CONVEX UNIFORM SPACES

  • Kim, Hoonjoo
    • Nonlinear Functional Analysis and Applications
    • /
    • v.26 no.1
    • /
    • pp.93-104
    • /
    • 2021
  • In this paper, we present a fixed point theorem for a family of generalized condensing multimaps which have ranges of the Zima-Hadžić type in Hausdorff KKM uniform spaces. It extends Himmelberg et al. type fixed point theorem. As applications, we obtain some new collective fixed point theorems for various type generalized condensing multimaps in abstract convex uniform spaces.

CONVERGENCE THEOREM FOR A GENERALIZED 𝜑-WEAKLY CONTRACTIVE NONSELF MAPPING IN METRICALLY CONVEX METRIC SPACES

  • Kim, Kyung Soo
    • Nonlinear Functional Analysis and Applications
    • /
    • v.26 no.3
    • /
    • pp.601-610
    • /
    • 2021
  • A convergence theorem for a generalized 𝜑-weakly contractive mapping is proved which satisfy a generalized contraction condition on a complete metrically convex metric space. The result in this paper generalizes the relevant results due to Rhoades [18], Alber and Guerre-Delabriere [1], Khan and Imdad [14], Xue [20] and others. An illustrative example is also furnished in support of our main result.

COMMENTS ON DING'S EXAMPLES OF FC-SPACES AND RELATED MATTERS

  • Park, Se-Hie
    • Communications of the Korean Mathematical Society
    • /
    • v.27 no.1
    • /
    • pp.137-148
    • /
    • 2012
  • Recently Ding [4, 5, 8] gives examples of his FC-spaces which are not L-spaces due to Ben-El-Mechaiekh et al. [1]. We show that they are actually L-spaces. We also clarify that all statements in [5] can be stated in corrected and generalized forms for the class of abstract convex spaces beyond FC-spaces.

APPLICATIONS OF RESULTS ON ABSTRACT CONVEX SPACES TO TOPOLOGICAL ORDERED SPACES

  • Kim, Hoonjoo
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.1
    • /
    • pp.305-320
    • /
    • 2013
  • Topological semilattices with path-connected intervals are special abstract convex spaces. In this paper, we obtain generalized KKM type theorems and their analytic formulations, maximal element theorems and collectively fixed point theorems on abstract convex spaces. We also apply them to topological semilattices with path-connected intervals, and obtain generalized forms of the results of Horvath and Ciscar, Luo, and Al-Homidan et al..

GENERALIZED MINIMAX THEOREMS IN GENERALIZED CONVEX SPACES

  • Kim, Hoon-Joo
    • Honam Mathematical Journal
    • /
    • v.31 no.4
    • /
    • pp.559-578
    • /
    • 2009
  • In this work, we obtain intersection theorem, analytic alternative and von Neumann type minimax theorem in G-convex spaces. We also generalize Ky Fan minimax inequality to acyclic versions in G-convex spaces. The result is applied to formulate acyclic versions of other minimax results, a theorem of systems of inequalities and analytic alternative.