• 제목/요약/키워드: generalized approximate cross validation function

검색결과 9건 처리시간 0.016초

e-SVR using IRWLS Procedure

  • Shim, Joo-Yong
    • Journal of the Korean Data and Information Science Society
    • /
    • 제16권4호
    • /
    • pp.1087-1094
    • /
    • 2005
  • e-insensitive support vector regression(e-SVR) is capable of providing more complete description of the linear and nonlinear relationships among random variables. In this paper we propose an iterative reweighted least squares(IRWLS) procedure to solve the quadratic problem of e-SVR with a modified loss function. Furthermore, we introduce the generalized approximate cross validation function to select the hyperparameters which affect the performance of e-SVR. Experimental results are then presented which illustrate the performance of the IRWLS procedure for e-SVR.

  • PDF

Support vector quantile regression for longitudinal data

  • Hwang, Chang-Ha
    • Journal of the Korean Data and Information Science Society
    • /
    • 제21권2호
    • /
    • pp.309-316
    • /
    • 2010
  • Support vector quantile regression (SVQR) is capable of providing more complete description of the linear and nonlinear relationships among response and input variables. In this paper we propose a weighted SVQR for the longitudinal data. Furthermore, we introduce the generalized approximate cross validation function to select the hyperparameters which affect the performance of SVQR. Experimental results are the presented, which illustrate the performance of the proposed SVQR.

Censored Kernel Ridge Regression

  • Shim, Joo-Yong
    • Journal of the Korean Data and Information Science Society
    • /
    • 제16권4호
    • /
    • pp.1045-1052
    • /
    • 2005
  • This paper deals with the estimations of kernel ridge regression when the responses are subject to randomly right censoring. The weighted data are formed by redistributing the weights of the censored data to the uncensored data. Then kernel ridge regression can be taken up with the weighted data. The hyperparameters of model which affect the performance of the proposed procedure are selected by a generalized approximate cross validation(GACV) function. Experimental results are then presented which indicate the performance of the proposed procedure.

  • PDF

Semisupervised support vector quantile regression

  • Seok, Kyungha
    • Journal of the Korean Data and Information Science Society
    • /
    • 제26권2호
    • /
    • pp.517-524
    • /
    • 2015
  • Unlabeled examples are easier and less expensive to be obtained than labeled examples. In this paper semisupervised approach is used to utilize such examples in an effort to enhance the predictive performance of nonlinear quantile regression problems. We propose a semisupervised quantile regression method named semisupervised support vector quantile regression, which is based on support vector machine. A generalized approximate cross validation method is used to choose the hyper-parameters that affect the performance of estimator. The experimental results confirm the successful performance of the proposed S2SVQR.

Estimating Variance Function with Kernel Machine

  • Kim, Jong-Tae;Hwang, Chang-Ha;Park, Hye-Jung;Shim, Joo-Yong
    • Communications for Statistical Applications and Methods
    • /
    • 제16권2호
    • /
    • pp.383-388
    • /
    • 2009
  • In this paper we propose a variance function estimation method based on kernel trick for replicated data or data consisted of sample variances. Newton-Raphson method is used to obtain associated parameter vector. Furthermore, the generalized approximate cross validation function is introduced to select the hyper-parameters which affect the performance of the proposed variance function estimation method. Experimental results are then presented which illustrate the performance of the proposed procedure.

Support Vector Quantile Regression with Weighted Quadratic Loss Function

  • Shim, Joo-Yong;Hwang, Chang-Ha
    • Communications for Statistical Applications and Methods
    • /
    • 제17권2호
    • /
    • pp.183-191
    • /
    • 2010
  • Support vector quantile regression(SVQR) is capable of providing more complete description of the linear and nonlinear relationships among random variables. In this paper we propose an iterative reweighted least squares(IRWLS) procedure to solve the problem of SVQR with a weighted quadratic loss function. Furthermore, we introduce the generalized approximate cross validation function to select the hyperparameters which affect the performance of SVQR. Experimental results are then presented which illustrate the performance of the IRWLS procedure for SVQR.

GACV for partially linear support vector regression

  • Shim, Jooyong;Seok, Kyungha
    • Journal of the Korean Data and Information Science Society
    • /
    • 제24권2호
    • /
    • pp.391-399
    • /
    • 2013
  • Partially linear regression is capable of providing more complete description of the linear and nonlinear relationships among random variables. In support vector regression (SVR) the hyper-parameters are known to affect the performance of regression. In this paper we propose an iterative reweighted least squares (IRWLS) procedure to solve the quadratic problem of partially linear support vector regression with a modified loss function, which enables us to use the generalized approximate cross validation function to select the hyper-parameters. Experimental results are then presented which illustrate the performance of the partially linear SVR using IRWLS procedure.

Semiparametric support vector machine for accelerated failure time model

  • Hwang, Chang-Ha;Shim, Joo-Yong
    • Journal of the Korean Data and Information Science Society
    • /
    • 제21권4호
    • /
    • pp.765-775
    • /
    • 2010
  • For the accelerated failure time (AFT) model a lot of effort has been devoted to develop effective estimation methods. AFT model assumes a linear relationship between the logarithm of event time and covariates. In this paper we propose a semiparametric support vector machine to consider situations where the functional form of the effect of one or more covariates is unknown. The proposed estimating equation can be computed by a quadratic programming and a linear equation. We study the effect of several covariates on a censored response variable with an unknown probability distribution. We also provide a generalized approximate cross-validation method for choosing the hyper-parameters which affect the performance of the proposed approach. The proposed method is evaluated through simulations using the artificial example.

A kernel machine for estimation of mean and volatility functions

  • Shim, Joo-Yong;Park, Hye-Jung;Hwang, Chang-Ha
    • Journal of the Korean Data and Information Science Society
    • /
    • 제20권5호
    • /
    • pp.905-912
    • /
    • 2009
  • We propose a doubly penalized kernel machine (DPKM) which uses heteroscedastic location-scale model as basic model and estimates both mean and volatility functions simultaneously by kernel machines. We also present the model selection method which employs the generalized approximate cross validation techniques for choosing the hyperparameters which affect the performance of DPKM. Artificial examples are provided to indicate the usefulness of DPKM for the mean and volatility functions estimation.

  • PDF