• Title/Summary/Keyword: generalized $(\alpha,\

Search Result 199, Processing Time 0.025 seconds

SUM AND PRODUCT THEOREMS RELATING TO GENERALIZED RELATIVE ORDER (𝛼, 𝛽) AND GENERALIZED RELATIVE TYPE (𝛼, 𝛽) OF ENTIRE FUNCTIONS

  • Biswas, Tanmay;Biswas, Chinmay;Saha, Biswajit
    • The Pure and Applied Mathematics
    • /
    • v.28 no.2
    • /
    • pp.155-185
    • /
    • 2021
  • Orders and types of entire functions have been actively investigated by many authors. In this paper, we investigate some basic properties in connection with sum and product of generalized relative order (𝛼, 𝛽), generalized relative type (𝛼, 𝛽) and generalized relative weak type (𝛼, 𝛽) of entire functions with respect to another entire function where 𝛼, 𝛽 are continuous non-negative functions on (-∞, +∞).

Some Properties of the Generalized Apostol Type Hermite-Based Polynomials

  • KHAN, WASEEM AHMAD
    • Kyungpook Mathematical Journal
    • /
    • v.55 no.3
    • /
    • pp.597-614
    • /
    • 2015
  • In this paper, we study some properties of the generalized Apostol type Hermite-based polynomials. which extend some known results. We also deduce some properties of the generalized Apostol-Bernoulli polynomials, the generalized Apostol-Euler polynomials and the generalized Apostol-Genocchi polynomials of high order. Numerous properties of these polynomials and some relationships between $F_n{^{({\alpha})}}(x;{\lambda};{\mu};{\nu};c)$ and $_HF_n{^{({\alpha})}}(x;{\lambda};{\mu};{\nu};c)$ are established. Some implicit summation formulae and general symmetry identities are derived by using different analytical means and applying generating functions.

ANALYTIC OPERATOR-VALUED GENERALIZED FEYNMAN INTEGRALS ON FUNCTION SPACE

  • Chang, Seung Jun;Lee, Il Yong
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.23 no.1
    • /
    • pp.37-48
    • /
    • 2010
  • In this paper we use a generalized Brownian motion process to defined an analytic operator-valued generalized Feynman integral. We then obtain explicit formulas for the analytic operatorvalued generalized Feynman integrals for functionals of the form $$F(x)=f\({\int}^T_0{\alpha}_1(t)dx(t),{\cdots},{\int}_0^T{\alpha}_n(t)dx(t)\)$$, where x is a continuous function on [0, T] and {${\alpha}_1,{\cdots},{\alpha}_n$} is an orthonormal set of functions from ($L^2_{a,b}[0,T]$, ${\parallel}{\cdot}{\parallel}_{a,b}$).

A predictor-corrector algorithm of the generalized-$\alpha$ method for analysis of structural dynamics (동적해석을 위한 일반화된$\alpha$ 방범의 예측 수정자 알고리즘)

  • ;Hulbert, Gregory M.
    • Journal of KSNVE
    • /
    • v.5 no.2
    • /
    • pp.207-213
    • /
    • 1995
  • A new predictor-corrector explicit time integration algorithm is presented for solving structural dynamics problems. The basis of the algorithm is the implicit generalized-.alpha. method recently developed by the authors. Like its implicit parent, the explicit generalized-$\alpha$ method is a one- parameter family of algorithms in which the parameter defines the high-frequency numerical dissipation. The algorithm can be utilized effectively for linear and nonlinear structural dynamics calculations is which numerical dissipation is needed to reduce spurious oscillations inherent in non-dissipative time integration methods used to solve wave propagation problems.

  • PDF

GENERALIZED RELATIVE ORDER (α, β) BASED SOME GROWTH ANALYSIS OF COMPOSITE ENTIRE FUNCTIONS

  • Biswas, Tanmay;Biswas, Chinmay
    • The Pure and Applied Mathematics
    • /
    • v.29 no.2
    • /
    • pp.125-139
    • /
    • 2022
  • In this paper we wish to establish some results relating to the growths of composition of two entire functions with their corresponding left and right factors on the basis of their generalized relative order (α, β) and generalized relative lower order (α, β) where α and β are continuous non-negative functions defined on (-∞, +∞).

A GALOIS EXTENSION WITH GALOIS GROUP DIHEDRAL GROUP OR GENERALIZED QUATERNION GROUP

  • Hwang, Yoon-Sung
    • Communications of the Korean Mathematical Society
    • /
    • v.20 no.4
    • /
    • pp.641-644
    • /
    • 2005
  • Let L/F be a Galois quadratic extension such that F contains a primitive n-th root of 1. Let N = L(${\alpha}^{{\frac{1}{n}}$) where ${\alpha}{\in}L{\ast}$. We show that if $N_{L/F}({\alpha})\;{\in}L^n{\cap}F$, and [N : L] = m, then $G(N/ F) {\simeq}D_m$ or generalized quaternion group whether $N_{L/F}({\alpha})\;{\in}\;F^n\;or\;{\notin}F^n$, respectively.

Characterization of New Two Parametric Generalized Useful Information Measure

  • Bhat, Ashiq Hussain;Baig, M. A. K.
    • Journal of Information Science Theory and Practice
    • /
    • v.4 no.4
    • /
    • pp.64-74
    • /
    • 2016
  • In this paper we define a two parametric new generalized useful average code-word length $L_{\alpha}^{\beta}$(P;U) and its relationship with two parametric new generalized useful information measure $H_{\alpha}^{\beta}$(P;U) has been discussed. The lower and upper bound of $L_{\alpha}^{\beta}$(P;U), in terms of $H_{\alpha}^{\beta}$(P;U) are derived for a discrete noiseless channel. The measures defined in this communication are not only new but some well known measures are the particular cases of our proposed measures that already exist in the literature of useful information theory. The noiseless coding theorems for discrete channel proved in this paper are verified by considering Huffman and Shannon-Fano coding schemes on taking empirical data. Also we study the monotonic behavior of $H_{\alpha}^{\beta}$(P;U) with respect to parameters ${\alpha}$ and ${\beta}$. The important properties of $H_{{\alpha}}^{{\beta}}$(P;U) have also been studied.

OPTIMALITY AND DUALITY IN NONDIFFERENTIABLE MULTIOBJECTIVE FRACTIONAL PROGRAMMING USING α-UNIVEXITY

  • Gupta, Rekha;Srivastava, Manjari
    • Journal of applied mathematics & informatics
    • /
    • v.32 no.3_4
    • /
    • pp.359-375
    • /
    • 2014
  • In this paper, a multiobjective nondifferentiable fractional programming problem (MFP) is considered where the objective function contains a term involving the support function of a compact convex set. A vector valued (generalized) ${\alpha}$-univex function is defined to extend the concept of a real valued (generalized) ${\alpha}$-univex function. Using these functions, sufficient optimality criteria are obtained for a feasible solution of (MFP) to be an efficient or weakly efficient solution of (MFP). Duality results are obtained for a Mond-Weir type dual under (generalized) ${\alpha}$-univexity assumptions.

A RELATION OF GENERALIZED q-ω-EULER NUMBERS AND POLYNOMIALS

  • Park, Min Ji;Kim, Young Rok;Lee, Hui Young
    • Journal of applied mathematics & informatics
    • /
    • v.35 no.3_4
    • /
    • pp.413-421
    • /
    • 2017
  • In this paper, we study the generalizations of Euler numbers and polynomials by using the q-extension with p-adic integral on $\mathbb{Z}_p$. We call these: the generalized q-${\omega}$-Euler numbers $E^{({\alpha})}_{n,q,{{\omega}}(a)$ and polynomials $E^{({\alpha})}_{n,q,{\omega}}(x;a)$. We investigate some elementary properties and relations for $E^{({\alpha})}_{n,q,{{\omega}}(a)$ and $E^{({\alpha})}_{n,q,{\omega}}(x;a)$.