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GENERALIZED RELATIVE ORDER (α, β) BASED SOME

GROWTH ANALYSIS OF COMPOSITE ENTIRE FUNCTIONS

Tanmay Biswas a and Chinmay Biswas b, ∗

Abstract. In this paper we wish to establish some results relating to the growths of
composition of two entire functions with their corresponding left and right factors on
the basis of their generalized relative order (α, β) and generalized relative lower order
(α, β) where α and β are continuous non-negative functions defined on (−∞,+∞).

1. Introduction, Definitions and Notations

For any entire function f defined in the open complex plane C, the maximum

modulus function Mf (r) is defined as Mf (r) = max
|z|=r

|f (z) |. Since Mf (r) is strictly

increasing and continuous, therefore there exists its inverse functionM−1
f : (|f (0)| ,∞)

→ (0,∞) with lim
s→∞

M−1
f (s) = ∞. The maximum term µf (r) of f =

∞∑
n=0

anz
n on

|z| = r can be defined in the following way:

µf (r) = max
n≥0

(|an|rn) .

We use the standard notations and definitions of the theory of entire functions

which are available in [11] and [12], and therefore we do not explain those in details.

Now let L be a class of continuous non-negative functions α defined on (−∞,+∞)

such that α(x) = α(x0) ≥ 0 for x ≤ x0 with α(x) ↑ +∞ as x → +∞ and α((1 +

o(1))x) = (1 + o(1))α(x) as x → +∞. We say that α ∈ L0, if α ∈ L and α(cx) =

(1 + o(1))α(x) as x0 ≤ x → +∞ for each c ∈ (0,+∞), i.e., α is slowly increasing

function. Clearly L0 ⊂ L.

Further we assume that throughout the present paper α, α1, α2, β, β1 and β2

always denote the functions belonging to L0.
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Considering this, the value

ρ(α,β)[f ] = lim sup
r→+∞

α(logMf (r))

β(log r)
(α ∈ L, β ∈ L)

is called [8] generalized order (α, β) of an entire function f . For details about gener-

alized order (α, β) one may see [8]. During the past decades, several authors made

close investigations on the properties of entire functions related to generalized order

(α, β) in some different directions. For the purposes of further applications, Biswas

et al. [3] rewrote the definition of the generalized order (α, β) of entire function in the

following way after giving a minor modification to the original definition (e.g. see,

[8]) which considerably extend the definition of φ-order of entire function introduced

by Chyzhykov et al. [6]:

Definition 1.1 ([3]). The generalized order (α, β) denoted by ρ(α,β)[f ] and gen-

eralized lower order (α, β) denoted by λ(α,β)[f ] of an entire function f are defined

as:

ρ(α,β)[f ] = lim sup
r→+∞

α(Mf (r))

β(r)
and λ(α,β)[f ] = lim inf

r→+∞

α(Mf (r))

β(r)

Since for 0 ≤ r < R,

µf (r) ≤ Mf (r) ≤
R

R− r
µf (R){cf. [10] },

it is easy to see that

ρ(α,β)[f ] = lim sup
r→+∞

α(µf (r))

β(r)
and λ(α,β)[f ] = lim inf

r→+∞

α(µf (r))

β(r)

Mainly the growth investigation of entire functions has usually been done through

their maximum moduli function in comparison with those of exponential function.

But if one is paying attention to evaluate the growth rates of any entire function with

respect to a new entire function, the notions of relative growth indicators (see e.g.

[1, 2]) will come. Now in order to make some progresses in the study of relative order,

Biswas et al. [4] introduced the definitions of generalized relative order (α, β) and

generalized relative lower order (α, β) of an entire function with respect to another

entire function in the following way:

Definition 1.2 ([4]). Let α, β ∈ L0. The generalized relative order (α, β) and

generalized relative lower order (α, β) of an entire function f with respect to an

entire function g denoted by ϱ(α,β)[f ]g and λ(α,β)[f ]g respectively are defined as:

ρ(α,β)[f ]g = lim sup
r→+∞

α(M−1
g (Mf (r)))

β(r)
and λ(α,β)[f ]g = lim inf

r→+∞

α(M−1
g (Mf (r)))

β(r)
.
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In terms of maximum terms of entire functions, Definition 1.2 can be refor-

mulated as:

Definition 1.3 ([5]). Let α, β ∈ L0. The growth indicators ρ(α,β)[f ]g and λ(α,β)[f ]g

of an entire function f with respect to another entire function g are defined as:

ρ(α,β)[f ]g = lim sup
r→+∞

α(µ−1
g (µf (r)))

β(r)
and λ(α,β)[f ]g = lim inf

r→+∞

α(µ−1
g (µf (r)))

β(r)
.

In fact, Definition 1.2 and Definition 1.3 are equivalent (e.g. see, [5]).

In the paper we wish to establish some newly developed results based on the

comparative growth of composite entire functions on the basis of their generalized

relative order (α, β) and generalized relative lower order (α, β).

2. Known Results

In this section we present some lemmas which will be needed in the sequel.

Lemma 2.1 ([7]). Let f and g are any two entire functions with g(0) = 0. Also let

b satisfy 0 < b < 1 and c(b) = (1−b)2

4b . Then for all sufficiently large values of r,

Mf (c(b)Mg(br)) ≤ Mf◦g(r) ≤ Mf (Mg(r)).

In addition if b = 1
2 , then for all sufficiently large values of r,

Mf◦g(r) ≥ Mf

(1
8
Mg

(r
2

))
.

Lemma 2.2 ([9]). Let f and g be entire functions. Then for every δ > 1 and

0 < r < R,

µf◦g(r) ≤
δ

δ − 1
µf

( δR

R− r
µg(R)

)
.

Lemma 2.3 ([9]). If f and g are any two entire functions. Then for all sufficiently

large values of r,

µf◦g(r) ≥
1

2
µf

( 1

16
µg

(r
4

))
.

Lemma 2.4 ([2]). Suppose f is an entire function and A > 1, 0 < B < A. Then

for all sufficiently large r,

Mf (Ar) ≥ BMf (r).
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3. Main Results

In this section we present the main results of the paper.

Theorem 3.1. Let f, g, h and k be any four entire functions such that ρ(α1,β1)[f ◦
g]h < ∞ and λ(α3,β3)[g]k > 0. Then

lim
r→+∞

{α1(µ
−1
h (µf◦g(β

−1
1 (log r))))}2

α3(µ
−1
k (µg(β

−1
3 (log r)))) · α3(µ

−1
k (µg(β

−1
3 (r))))

= 0.

Proof. For arbitrary positive ε we have for all sufficiently large values of r that

(3.1) α1(µ
−1
h (µf◦g(β

−1
1 (log r)))) ≤ (ρ(α1,β1)[f ◦ g]h + ε) log r.

Again for all sufficiently large values of r we get

(3.2) α3(µ
−1
k (µg(β

−1
3 (log r))) ≥ (λ(α3,β3)[g]k − ε) log r.

Similarly for all sufficiently large values of r we have

(3.3) α3(µ
−1
k (µg(β

−1
3 (r)))) ≥ (λ(α3,β3)[g]k − ε)r.

From (3.1) and (3.2) we have for all sufficiently large values of r that

α1(µ
−1
h (µf◦g(β

−1
1 (log r))))

α3(µ
−1
k (µg(β

−1
3 (log r)))

≤
(ρ(α1,β1)[f ◦ g]h + ε) log r

(λ(α3,β3)[g]k − ε) log r
.

As ε(> 0) is arbitrary we obtain from above that

(3.4) lim sup
r→+∞

α1(µ
−1
h (µf◦g(β

−1
1 (log r))))

α3(µ
−1
k (µg(β

−1
3 (log r)))

≤
ρ(α1,β1)[f ◦ g]h
λ(α3,β3)[g]k

.

Again from (3.1) and (3.3) we get for all sufficiently large values of r that

α1(µ
−1
h (µf◦g(β

−1
1 (log r))))

α3(µ
−1
k (µg(β

−1
3 (r))))

≤
(ρ(α1,β1)[f ◦ g]h + ε) log r

(λ(α3,β3)[g]k − ε)r
.

Since ε(> 0) is arbitrary it follows from above that

(3.5) lim
r→+∞

α1(µ
−1
h (µf◦g(β

−1
1 (log r))))

α3(µ
−1
k (µg(β

−1
3 (r))))

= 0.

Thus the theorem follows from (3.4) and (3.5). �

Theorem 3.2. Let f, g, h, k, l and m be six entire functions such that ρ(α1,β1)[f ]l <

+∞, λ(α3,β3)[h]m > 0, λ(α4,β4)[k] > 0 and ρ(α2,β2)[g] < λ(α4,β4)[k]. Also let C and D

be any two positive constants.

(i) Any one of the following four conditions are assumed to be satisfied:
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(a) β1(r) = C(exp(α2(r))) and β3(r) = D exp(α4(r));

(b) β1(r) = C(exp(α2(r))) and β3(r) > exp(α4(r));

(c) exp(α2(r)) > β1(r) and β3(r) = D exp(α4(r));

(d) exp(α2(r)) > β1(r) and β3(r) > exp(α4(r)), then

lim
r→+∞

α3(µ
−1
m (µh◦k(β

−1
4 (log r))))

α1(µ
−1
l (µf◦g(β

−1
2 (log r))))

= ∞.

(ii) Any one of the following two conditions are assumed to be satisfied:

(a) β1(r) = C(exp(α2(r))) and α4(β
−1
3 (r)) ∈ L0;

(b) β3(r) > exp(α4(r)) and α4(β
−1
3 (r)) ∈ L0, then

lim
r→+∞

exp(α4(β
−1
3 (α3(µ

−1
m (µh◦k(β

−1
4 (log r)))))))

α1(µ
−1
l (µf◦g(β

−1
2 (log r))))

= ∞.

(iii) Any one of the following two conditions are assumed to be satisfied:

(a) β3(r) = D exp(α4(r)) and α2(β
−1
1 (r)) ∈ L0;

(b) β3(r) > exp(α4(r)) and α2(β
−1
1 (r)) ∈ L0, then

lim
r→+∞

α3(µ
−1
m (µh◦k(β

−1
4 (log r))))

exp(α2(β
−1
1 (α1(µ

−1
l (µf◦g(β

−1
2 (log r)))))))

= ∞.

(iv) If α2(β
−1
1 (r)) ∈ L0 and α4(β

−1
3 (r)) ∈ L0, then

lim
r→+∞

exp(α4(β
−1
3 (α3(µ

−1
m (µh◦k(β

−1
4 (log r)))))))

exp(α2(β
−1
1 (α1(µ

−1
l (µf◦g(β

−1
2 (log r)))))))

= ∞.

Proof. Taking R = 2r in Lemma 2.2 we obtain for all sufficiently large values of r

that

α1(µ
−1
l (µf◦g(β

−1
2 (log r)))) 6

(3.6) (1 + o(1))(ρ(α1,β1)[f ]l + ε)β1(µg(2β
−1
2 (log r))).

Case I. Let β1(r) = C(exp(α2(r))). Then we have from (3.6) for all sufficiently

large values of r that

(3.7) α1(µ
−1
l (µf◦g(β

−1
2 (log r)))) 6 C(1+ o(1))(ρ(α1,β1)[f ]l+ ε)r(1+o(1))(ρ(α2,β2)

[g]+ε).

Case II. Let exp(α2(r)) > β1(r). Then we have from (3.6) for all sufficiently

large values of r that

(3.8) α1(µ
−1
l (µf◦g(β

−1
2 (log r)))) 6 (1 + o(1))(ρ(α1,β1)[f ]l + ε)r(1+o(1))(ρ(α2,β2)

[g]+ε).



130 T. Biswas & C. Biswas

Case III. Let α2(β
−1
1 (r)) ∈ L0. Then we get from(3.6) for all sufficiently large

values of r that

(3.9) exp(α2(β
−1
1 (α1(µ

−1
l (µf◦g(β

−1
2 (log r))))))) 6 r(1+o(1))(ρ(α2,β2)

[g]+ε).

Further in view of the inequalities µg(r) ≤ Mg(r) ≤ R
R−rµg(R) {cf. [10]}, for

0 ≤ r < R, it follows from Lemma 2.3 and Lemma 2.4 for all sufficiently large values

r that

α3(µ
−1
m (µh◦k(β

−1
4 (log r)))) ≥

α3

(
µ−1
m

(
µh

( 1

80
µk

(β−1
4 (log r)

4

))))
i.e., α3(µ

−1
m (µh◦k(β

−1
4 (log r)))) ≥

(3.10) (1 + o(1))(λ(α3,β3)[h]m − ε)β3

(
µk

(β−1
4 (log r)

4

))
.

Case IV. Let β3(r) = D exp(α4(r)) Then from (3.10) it follows for all sufficiently

large values of r that

α3(µ
−1
m (µh◦k(β

−1
4 (log r)))) ≥

(3.11) D(1 + o(1))(λ(α3,β3)[h]m − ε)r(1+o(1))(λ(α4,β4)
[k]−ε).

Case V. Let β3(r) > exp(α4(r)). Now from (3.10) it follows for all sufficiently

large values of r that

α3(µ
−1
m (µh◦k(β

−1
4 (log r)))) >

(3.12) (1 + o(1))(λ(α3,β3)[h]m − ε)r(1+o(1))(λ(α4,β4)
[k]−ε).

Case VI. Let α4(β
−1
3 (r)) ∈ L0. Then from (3.10) we obtain for all sufficiently

large values of r that

(3.13) exp(α4(β
−1
3 (α3(µ

−1
m (µh◦k(β

−1
4 (log r))))))) > r(1+o(1))(λ(α4,β4)

[k]−ε).

Since ρ(α2,β2)[g] < λ(α4,β4)[k] we can choose ε(> 0) in such a way that

(3.14) ρ(α2,β2)[g] + ε < λ(α4,β4)[k]− ε.

Now combining (3.7) of Case I and (3.11) of Case IV it follows for all sufficiently

large values of r that

α3(µ
−1
m (µh◦k(β

−1
4 (log r))))

α1(µ
−1
l (µf◦g(β

−1
2 (log r))))

≥
D(1 + o(1))(λ(α3,β3)[h]m − ε)r(1+o(1))(λ(α4,β4)

[k]−ε)

C(1 + o(1))(ρ(α1,β1)[f ]l + ε)r(1+o(1))(ρ(α2,β2)
[g]+ε)

.
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So from (3.14) and above we obtain that

(3.15) lim inf
r→+∞

α3(µ
−1
m (µh◦k(β

−1
4 (log r))))

α1(µ
−1
l (µf◦g(β

−1
2 (log r))))

= ∞.

Similarly combining (3.7) of Case I and (3.12) of Case V we get that

(3.16) lim inf
r→+∞

α3(µ
−1
m (µh◦k(β

−1
4 (log r))))

α1(µ
−1
l (µf◦g(β

−1
2 (log r))))

= ∞.

Analogously combining (3.8) of Case II and (3.11) of Case IV, we obtain that

(3.17) lim
r→+∞

α3(µ
−1
m (µh◦k(β

−1
4 (log r))))

α1(µ
−1
l (µf◦g(β

−1
2 (log r))))

= ∞.

Likewise combining (3.8) of Case II and (3.12) of Case V it follows that

(3.18) lim
r→+∞

α3(µ
−1
m (µh◦k(β

−1
4 (log r))))

α1(µ
−1
l (µf◦g(β

−1
2 (log r))))

= ∞.

Hence the first part of the theorem follows from (3.15), (3.16), (3.17) and (3.18).

Again combining (3.7) of Case I and (3.13) of Case VI we obtain for all sufficiently

large values of r that

exp(α4(β
−1
3 (α3(µ

−1
m (µh◦k(β

−1
4 (log r)))))))

α1(µ
−1
l (µf◦g(β

−1
2 (log r))))

≥ .

r(1+o(1))(λ(α4,β4)
[k]−ε)

C(1 + o(1))(ρ(α1,β1)[f ]l + ε)r(1+o(1))(ρ(α2,β2)
[g]+ε)

.

So from (3.14) and above we obtain that

lim
r→+∞

exp(α4(β
−1
3 (α3(µ

−1
m (µh◦k(β

−1
4 (log r)))))))

α1(µ
−1
l (µf◦g(β

−1
2 (log r))))

= ∞.

Similarly combining (3.8) of Case II and (3.13) of Case VI we also get same

conclusion. Therefore the second part of the theorem is established.

Again combining (3.9) of Case III and (3.11) of Case IV it follows for all suffi-

ciently large values of r that

α3(µ
−1
m (µh◦k(β

−1
4 (log r))))

exp(α2(β
−1
1 (α1(µ

−1
l (µf◦g(β

−1
2 (log r)))))))

≥

(3.19)
D(1 + o(1))(λ(α3,β3)[h]m − ε)r(1+o(1))(λ(α4,β4)

[k]−ε)

r(1+o(1))(ρ(α2,β2)
[g]+ε)

.

Now in view of (3.14) we obtain from (3.19) that

(3.20) lim
r→+∞

α3(µ
−1
m (µh◦k(β

−1
4 (log r))))

exp(α2(β
−1
1 (α1(µ

−1
l (µf◦g(β

−1
2 (log r)))))))

= ∞.
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Similarly combining (3.9) of Case III and (3.12) of Case V we get that

(3.21) lim
r→+∞

α3(µ
−1
m (µh◦k(β

−1
4 (log r))))

exp(α2(β
−1
1 (α1(µ

−1
l (µf◦g(β

−1
2 (log r)))))))

= ∞.

Hence the third part of the theorem follows from (3.20) and (3.21).

Further combining (3.9) of Case III and (3.13) of Case VI we obtain for all

sufficiently large values of r that

exp(α4(β
−1
3 (α3(µ

−1
m (µh◦k(β

−1
4 (log r)))))))

exp(α2(β
−1
1 (α1(µ

−1
l (µf◦g(β

−1
2 (log r)))))))

≥ r(1+o(1))(λ(α4,β4)
[k]−ε)

r(1+o(1))(ρ(α2,β2)
[g]+ε)

.

Now in view of (3.14) we obtain from above that

lim
r→+∞

exp(α4(β
−1
3 (α3(µ

−1
m (µh◦k(β

−1
4 (log r)))))))

exp(α2(β
−1
1 (α1(µ

−1
l (µf◦g(β

−1
2 (log r)))))))

= ∞.

This proves the fourth part of the theorem.

Thus the theorem follows. �

Theorem 3.3. Let f , g and h be any three entire functions such that 0 < λ(α1,β1)[f ]h ≤
ρ(α1,β1)[f ]h < +∞ and ρ(α2,β2)[g] > 0. If α2(β

−1
1 (r)) ∈ L0, then

lim sup
r→+∞

α2(β
−1
1 (α1(µ

−1
h (µf◦g(β

−1
2 (r))))))

α1(µ
−1
h (µf (β

−1
1 (r))))

≥
ρ(α2,β2)[g]

ρ(α1,β1)[f ]h
.

Proof. From the definition of ρ(α1,β1)[f ]h, we get for all sufficiently large values of r

that

(3.22) α1(µ
−1
h (µf (β

−1
1 (r)))) ≤ (ρ(α1,β1)[f ]h + ε)r.

Further in view of the inequalities µg(r) ≤ Mg(r) ≤ R
R−rµg(R) {cf. [10]}, for 0 ≤

r < R, it follows from Lemma 2.3 and Lemma 2.4 for all sufficiently large values r

that

α1(µ
−1
h (µf◦g(β

−1
2 (r)))) ≥ (1 + o(1))(λ(α1,β1)[f ]h − ε)β1

(
µg

(β−1
2 (r)

4

))
.

Since α2(β
−1
1 (r)) ∈ L0, we obtain from above for a sequence of values of r tending

to infinity that

α2(β
−1
1 (α1(µ

−1
h (µf◦g(β

−1
2 (r)))))) ≥ (1 + o(1))α2

(
µg

(β−1
2 (r)

4

))
i.e., α2(β

−1
1 (α1(µ

−1
h (µf◦g(β

−1
2 (r)))))) ≥ (1 + o(1))(ρ(α2,β2)[g]− ε)r.
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Now combining (3.22) and above we get that

lim sup
r→+∞

α2(β
−1
1 (α1(µ

−1
h (µf◦g(β

−1
2 (r)))))

α1(µ
−1
h (µf (β

−1
1 (r))))

≥
ρ(α2,β2)[g]

ρ(α1,β1)[f ]h
.

Hence the theorem follows. �

Theorem 3.4. Let f , g and h be any three entire functions such that 0 < λ(α1,β1)[f ]h ≤
ρ(α1,β1)[f ]h < +∞ and λ(α2,β2)[g] > 0. If α2(β

−1
1 (r)) ∈ L0, then

lim inf
r→+∞

α2(β
−1
1 (α1(µ

−1
h (µf◦g(β

−1
2 (r))))))

α1(µ
−1
h (µf (β

−1
1 (r))))

≥
λ(α2,β2)[g]

ρ(α1,β1)[f ]h
.

Theorem 3.5. Let f , g and h be any three entire functions such that 0 < λ(α1,β1)[f ]h <

+∞ and λ(α2,β2)[g] > 0. If α2(β
−1
1 (r)) ∈ L0, then

lim sup
r→+∞

α2(β
−1
1 (α1(µ

−1
h (µf◦g(β

−1
2 (r))))))

α1(µ
−1
h (µf (β

−1
1 (r))))

≥
λ(α2,β2)[g]

λ(α1,β1)[f ]h
.

The proofs of Theorem 3.4 and Theorem 3.5 would run parallel to that of

Theorem 3.3. We omit the details.

Theorem 3.6. Let f , g and h be any three entire functions such that 0 < λ(α1,β1)[f ]h ≤
ρ(α1,β1)[f ]h < +∞ and ρ(α2,β2)[g] < +∞. If α2(β

−1
1 (r)) ∈ L0, then

lim sup
r→+∞

α2(β
−1
1 (α1(µ

−1
h (µf◦g(β

−1
2 (r))))))

α1(µ
−1
h (µf (β

−1
1 (r))))

≤
ρ(α2,β2)[g]

λ(α1,β1)[f ]h
.

Proof. From the definition of λ(α1,β1)[f ]h, we get for all sufficiently large values of r

that

(3.23) α1(µ
−1
h (µf (β

−1
1 (r)))) ≥ (λ(α1,β1)[f ]h − ε)r.

Further taking R = 2r in Lemma 2.2 we obtain for all sufficiently large values of r

that

(3.24) α1(µ
−1
h (µf◦g(r))) 6 (1 + o(1))(ρ(α1,β1)[f ]h + ε)β1(µg(2r)).

Since α2(β
−1
1 (r)) ∈ L0, we obtain from above for all sufficiently large values of r

that

α2(β
−1
1 (α1(µ

−1
h (µf◦g(β

−1
2 (r)))))) ≤ (1 + o(1))α2(µg(2β

−1
2 (r)))

i.e., α2(β
−1
1 (α1(µ

−1
h (µf◦g(β

−1
2 (r)))))) ≤ (1 + o(1))(ρ(α2,β2)[g] + ε)r.



134 T. Biswas & C. Biswas

Now combining (3.23) and above we get that

lim sup
r→+∞

α2(β
−1
1 (α1(µ

−1
h (µf◦g(β

−1
2 (r))))))

α1(µ
−1
h (µf (β

−1
1 (r))))

≤
ρ(α2,β2)[g]

λ(α1,β1)[f ]h
.

Hence the theorem follows. �

Theorem 3.7. Let f , g and h be any three entire functions such that 0 < λ(α1,β1)[f ]h ≤
ρ(α1,β1)[f ]h < +∞ and λ(α2,β2)[g] < +∞. If α2(β

−1
1 (r)) ∈ L0, then

lim inf
r→+∞

α2(β
−1
1 (α1(µ

−1
h (µf◦g(β

−1
2 (r))))))

α1(µ
−1
h (µf (β

−1
1 (r))))

≤
λ(α2,β2)[g]

λ(α1,β1)[f ]h
.

Theorem 3.8. Let f , g and h be any three entire functions such that 0 < λ(α1,β1)[f ]h ≤
ρ(α1,β1)[f ]h < +∞ and ρ(α2,β2)[g] < +∞. If α2(β

−1
1 (r)) ∈ L0, then

lim inf
r→+∞

α2(β
−1
1 (α1(µ

−1
h (µf◦g(β

−1
2 (r))))))

α1(µ
−1
h (µf (β

−1
1 (r))))

≤
ρ(α2,β2)[g]

ρ(α1,β1)[f ]h
.

The proofs of Theorem 3.7 and Theorem 3.8 would run parallel to that of

Theorem 3.6. We omit the details.

Remark 3.9. Theorem 3.1 to Theorem 3.8 can also be deduced in terms of maxi-

mum modulus of entire functions with the help of Lemma 2.1.

Theorem 3.10. Let f , g and h be any three entire functions such that ρ(α2,β2)[g] <

λ(α1,β1)[f ]h ≤ ρ(α1,β1)[f ]h. Also let C be any positive constant and β1 ∈ L0.

(i) Any one of the following two conditions are assumed to be satisfied:

(a) β1(r) = C(exp(α2(r)));

(b) exp(α2(r)) > β1(r); then

lim sup
r→+∞

{α1(µ
−1
h (µf◦g(β

−1
2 (log r))))}2

exp(α1(µ
−1
h (µf (β

−1
1 (log r)))) · β1(µg(2β

−1
2 (log r)))

= 0.

(ii) If α2(β
−1
1 (r)) ∈ L0, then

lim
r→+∞

exp(α2(β
−1
1 (α1(µ

−1
l (µf◦g(β

−1
2 (log r))))))) · α1(µ

−1
h (µf◦g(β

−1
2 (log r))))

exp(α1(µ
−1
h (µf (β

−1
1 (log r)))) · β1(µg(2β

−1
2 (log r)))

= 0.

Proof. From the definition of generalized relative lower order (α1, β1) of f with

respect to h, we have for arbitrary positive ε and for all sufficiently large values of

r that

(3.25) exp(α1(µ
−1
h (µf (β

−1
1 (log r)))) ≥ r(λ(α1,β1)

[f ]h−ε).
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As ρ(α2,β2)[g] < λ(α1,β1)[f ]h we can choose ε(> 0) in such a way that

(3.26) ρ(α2,β2)[g] + ε < λ(α1,β1)[f ]h − ε.

Now in view of (3.7) of Case I and (3.25) we have for all large positive numbers

of r,

α1(µ
−1
h (µf◦g(β

−1
2 (log r))))

exp(α1(µ
−1
h (µf (β

−1
1 (log r))))

≤
C(1 + o(1))(ρ(α1,β1)[f ]h + ε)r(1+o(1))(ρ(α2,β2)

[g]+ε)

r(λ(α1,β1)
[f ]h−ε)

.

In view of (3.26) we get from above that

(3.27) lim
r→+∞

α1(µ
−1
h (µf◦g(β

−1
2 (log r))))

exp(α1(µ
−1
h (µf (β

−1
1 (log r))))

= 0.

Again in view of (3.8) of Case II and (3.25) it follows for all sufficiently large

positive numbers of r that

α1(µ
−1
h (µf◦g(β

−1
2 (log r))))

exp(α1(µ
−1
h (µf (β

−1
1 (log r))))

≤
(1 + o(1))(ρ(α1,β1)[f ]h + ε)r(1+o(1))(ρ(α2,β2)

[g]+ε)

r(λ(α1,β1)
[f ]h−ε)

.

Now in view of (3.26) we obtain from above that

(3.28) lim
r→+∞

α1(µ
−1
h (µf◦g(β

−1
2 (log r))))

exp(α1(µ
−1
h (µf (β

−1
1 (log r))))

= 0.

Further in view of (3.9) of Case III and (3.25) it follows for all sufficiently large

positive numbers of r that

exp(α2(β
−1
1 (α1(µ

−1
l (µf◦g(β

−1
2 (log r)))))))

exp(α1(µ
−1
h (µf (β

−1
1 (log r))))

≤ r(1+o(1))(ρ(α2,β2)
[g]+ε)

r(λ(α1,β1)
[f ]h−ε)

.

So in view of (3.26) we obtain from above that

(3.29) lim
r→+∞

exp(α2(β
−1
1 (α1(µ

−1
l (µf◦g(β

−1
2 (log r)))))))

exp(α1(µ
−1
h (µf (β

−1
1 (log r))))

= 0.

Now in view of (3.6) we get that

(3.30) lim sup
r→+∞

α1(µ
−1
h (µf◦g(β

−1
2 (log r))))

β1(µg(2β
−1
2 (log r)))

≤ ρ(α1,β1)[f ]h.

From (3.27) and (3.30) we obtain for all sufficiently large values of r that

lim sup
r→+∞

{α1(µ
−1
h (µf◦g(β

−1
2 (log r))))}2

exp(α1(µ
−1
h (µf (β

−1
1 (log r)))) · β1(µg(2β

−1
2 (log r)))

= lim
r→+∞

α1(µ
−1
h (µf◦g(β

−1
2 (log r))))

exp(α1(µ
−1
h (µf (β

−1
1 (log r))))

· lim sup
r→+∞

α1(µ
−1
h (µf◦g(β

−1
2 (log r))))

β1(µg(2β
−1
2 (log r)))

≤ 0 · ρ(α1,β1)[f ]h = 0.(3.31)
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Similarly from (3.28) and (3.30) we obtain that

lim sup
r→+∞

{α1(µ
−1
h (µf◦g(β

−1
2 (log r))))}2

exp(α1(µ
−1
h (µf (β

−1
1 (log r)))) · β1(µg(2β

−1
2 (log r)))

= 0.

Therefore the first part of the theorem follows from (3.31) and above.

Again from (3.29) and (3.30) we get for all large values of r that

lim sup
r→+∞

exp(α2(β
−1
1 (α1(µ

−1
l (µf◦g(β

−1
2 (log r))))))) · α1(µ

−1
h (µf◦g(β

−1
2 (log r))))

exp(α1(µ
−1
h (µf (β

−1
1 (log r)))) · β1(µg(2β

−1
2 (log r)))

= lim
r→+∞

exp(α2(β
−1
1 (α1(µ

−1
l (µf◦g(β

−1
2 (log r)))))))

exp(α1(µ
−1
h (µf (β

−1
1 (log r))))

·lim sup
r→+∞

α1(µ
−1
h (µf◦g(β

−1
2 (log r))))

β1(µg(2β
−1
2 (log r)))

≤ 0 · ρ(α1,β1)[f ]h = 0.

i.e., lim
r→+∞

exp(α2(β
−1
1 (α1(µ

−1
l (µf◦g(β

−1
2 (log r))))))) · α1(µ

−1
h (µf◦g(β

−1
2 (log r))))

exp(α1(µ
−1
h (µf (β

−1
1 (log r)))) · β1(µg(2β

−1
2 (log r)))

= 0.

Thus the second part of the theorem is established. �

In the line of Theorem 3.10 and with the help of Lemma 2.1, one can easily proof

the following theorem and therefore its proof is omitted:

Theorem 3.11. Let f , g and h be any three entire functions such that ρ(α2,β2)[g] <

λ(α1,β1)[f ]h ≤ ρ(α1,β1)[f ]h. Also let C be any positive constant and β1 ∈ L0.

(i) Any one of the following two conditions are assumed to be satisfied:

(a) β1(r) = C(exp(α2(r)));

(b) exp(α2(r)) > β1(r), then

lim sup
r→+∞

{α1(M
−1
h (Mf◦g(β

−1
2 (log r))))}2

exp(α1(M
−1
h (Mf (β

−1
1 (log r))))) · β1(Mg(β

−1
2 (log r)))

= 0.

(ii) If α2(β
−1
1 (r)) ∈ L0, then

lim
r→+∞

exp(α2(β
−1
1 (α1(M

−1
h (Mf◦g(β

−1
2 (log r))))))) · α1(M

−1
h (Mf◦g(β

−1
2 (log r))))

exp(α1(M
−1
h (Mf (β

−1
1 (log r))))) · β1(Mg(β

−1
2 (log r)))

= 0.

Theorem 3.12. Let f , g, h, l and k be any five entire functions such that λ(α1,β1)[f ]h <

∞, λ(α2,β2)[g]k > 0 and ρ(α3,β3)[f ◦ g]l < ∞ where α2, β1 ∈ L0. Then

lim sup
r→+∞

α1(µ
−1
h (µf◦g(β

−1
2 (log r)))) · α3(µ

−1
l (µf◦g(β

−1
3 (r))))

β1(µg(2β
−1
2 (log r))) · α2(µ

−1
k (µg(β

−1
2 (r))))

≤
ρ(α3,β3)[f ◦ g]l · ρ(α1,β1)[f ]h

λ(α2,β2)[g]k
.
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Proof. For all sufficiently large values of r we have

(3.32) α3(µ
−1
l (µf◦g(β

−1
3 (r)))) ≤ (ρ(α3,β3)[f ◦ g]l + ε)r.

Again for all sufficiently large values of r it follows that

(3.33) α2(µ
−1
k (µg(β

−1
2 (r)))) ≥ (λ(α2,β2)[g]k − ε)r.

Now combining (3.32) and (3.33) we have for all sufficiently large values of r that

α3(µ
−1
l (µf◦g(β

−1
3 (r))))

α2(µ
−1
k (µg(β

−1
2 (r))))

≤
ρ(α3,β3)[f ◦ g]l + ε

λ(α2,β2)[g]k − ε
.

As ε(> 0) is arbitrary we get from above that

(3.34) lim sup
r→+∞

α3(µ
−1
l (µf◦g(β

−1
3 (r))))

α2(µ
−1
k (µg(β

−1
2 (r))))

≤
ρ(α3,β3)[f ◦ g]l
λ(α2,β2)[g]k

.

Now from(3.30) and (3.34) we obtain that

lim sup
r→+∞

α1(µ
−1
h (µf◦g(β

−1
2 (log r)))) · α3(µ

−1
l (µf◦g(β

−1
3 (r))))

β1(µg(2β
−1
2 (log r))) · α2(µ

−1
k (µg(β

−1
2 (r))))

≤ lim sup
r→+∞

α1(µf◦g(β
−1
2 (log r)))

β1(µg(2β
−1
2 (log r)))

· lim sup
r→+∞

α3(µ
−1
l (µf◦g(β

−1
3 (r))))

α2(µ
−1
k (µg(β

−1
2 (r))))

≤
ρ(α3,β3)[f ◦ g]l · ρ(α1,β1)[f ]h

λ(α2,β2)[g]k
.

Hence the theorem follows. �

In the line of Theorem 3.12 and with the help of Lemma 2.1, one can easily proof

the following theorem and therefore its proof is omitted:

Theorem 3.13. Let f , g, h, l and k be any five entire functions such that ρ(α1,β1)[f ]h <

∞, λ(α2,β2)[g]k > 0 and ρ(α3,β3)[f ◦ g]l < ∞ where α2, β1 ∈ L0. Then

lim sup
r→+∞

α1(M
−1
h (Mf◦g(β

−1
2 (log r)))) · α3(M

−1
l (Mf◦g(β

−1
3 (r))))

β1(Mg(2β
−1
2 (log r))) · α2(M

−1
k (Mg(β

−1
2 (r))))

≤
ρ(α3,β3)[f ◦ g]l · ρ(α1,β1)[f ]h

λ(α2,β2)[g]k
.

Theorem 3.14. Let f , g, h and k be any four entire functions such that ρ(α1,β1)[f ]h <

∞ and λ(α3,β3)[f ◦ g]k = ∞. Then

lim
r→+∞

α3(µ
−1
k (µf◦g(r)))

α1(µ
−1
h (µf (β

−1
1 (β3(r)))))

= ∞.
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Proof. Let us suppose that the conclusion of the theorem do not hold. Then we can

find a constant ∆ > 0 such that for a sequence of values of r tending to infinity

(3.35) α3(µ
−1
k (µf◦g(r))) ≤ ∆ · α1(µ

−1
h (µf (β

−1
1 (β3(r))))).

Again from the definition of ρ(α1,β1)[f ]h, it follows for all sufficiently large values of

r that

(3.36) α1(µ
−1
h (µf (β

−1
1 (β3(r))))) ≤ (ρ(α1,β1)[f ]h + ϵ)β3(r).

Thus from (3.35) and (3.36), we have for a sequence of values of r tending to infinity

that

α3(µ
−1
k (µf◦g(r))) ≤ ∆(ρ(α1,β1)[f ]h + ϵ)β3(r)

i.e.,
α3(µ

−1
k (µf◦g(r)))

β3(r)
≤

∆(ρ(α1,β1)[f ]h + ϵ)β3(r)

β3(r)

i.e., lim inf
r+∞

α3(µ
−1
k (µf◦g(r)))

β3(r)
= λ(α3,β3)[f ◦ g]k < ∞.

This is a contradiction.

Thus the theorem follows. �

Remark 3.15. Theorem 3.14 is also valid with “limit superior” instead of “limit”

if λ(α3,β3)[f ◦ g]k = ∞ is replaced by ρ(α3,β3)[f ◦ g]k = ∞ and the other conditions

remain the same.

Analogously one may also state the following theorem without its proof as

it may be carried out in the line of Theorem 3.14.

Theorem 3.16. Let f , g, h and k be any four entire functions such that ρ(α1,β1)[g]h <

∞ and ρ(α3,β3)[f ◦ g]k = ∞. Then

lim sup
r→+∞

α3(µ
−1
k (µf◦g(r)))

α1(µ
−1
h (µg(β

−1
1 (β3(r)))))

= ∞.

Remark 3.17. Theorem 3.16 is also valid with “limit” instead of “limit superior”

if ρ(α3,β3)[f ◦ g]k = ∞ is replaced by λ(α3,β3)[f ◦ g]k = ∞ and the other conditions

remain the same.

Remark 3.18. Theorem 3.14, Theorem 3.16, Remark 3.15 and Remark 3.17 can

also be deduced in terms of maximum modulus of entire functions.
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