A GALOIS EXTENSION WITH GALOIS GROUP DIHEDRAL GROUP OR GENERALIZED QUATERNION GROUP

YOON SUNG HWANG

ABSTRACT. Let L/F be a Galois quadratic extension such that F contains a primitive n-th root of 1. Let $N=L(\alpha^{\frac{1}{n}})$ where $\alpha \in L^*$. We show that if $N_{L/F}(\alpha) \in L^n \cap F$, and [N:L]=m, then $G(N/F) \cong D_m$ or generalized quaternion group whether $N_{L/F}(\alpha) \in F^n$ or $\not\in F^n$, respectively.

There has been much work on the realization of groups of Galois groups. This is still a very active topic of research (See, e.g. [3] and [6]). The work here can be thought as the following problem: Given a Galois field extension L/F, when can we find a field $M \supseteq L$ Galois over F with G(M/F) a given group that has G(L/F) as a homomorphic image. Now we start with lemma.

LEMMA 1. Let m, n be positive integers with m|2n and n > 2. Let $G = <\tau, \sigma >$ be a group given by the relations $\tau^n = 1$ $(o(\tau) = n)$, $\sigma^m = 1$ $(o(\sigma) = m)$, $\sigma \tau = \tau^{-1} \sigma$, and $\sigma^2 = \tau^{\frac{2n}{m}}$. Then,

- (1) |G| = 2n.
- (2) $<\tau>$ is a normal subgroup of G of index 2.
- (3) m = 2 or 4, i.e., $G \cong D_n$ or generalized quaternion group of order 2n.

PROOF. First we check that σ^2 and $\tau^{\frac{2n}{m}}$ have the same order. (If m is even, then $o(\sigma^2) = \frac{m}{2} = o(\tau^{\frac{2n}{m}})$, and if m is odd, then $o(\sigma^2) = m = o(\tau^{\frac{2n}{m}})$.) The relations show every element of G has the form $\tau^i \sigma^j$ where $0 \le i \le n-1$ and $0 \le j \le 1$. So $|G| \le 2n$. But $\sigma \notin \tau < \tau > \text{since } \sigma$ and τ do not commute. (Otherwise, $\tau = \tau^{-1}$ but $o(\tau) > 2$.) Therefore, |G| = 2n. |G| = 2n.

Received January 26, 2005.

²⁰⁰⁰ Mathematics Subject Classification: 12F10.

Key words and phrases: Galois extension, Kummer extension.

This author was supported by Korea University Grant.

that m>1 is a consequence of the relations since m=1 implies $\sigma=1$, $\tau^2=1$, and $n\leq 2$, a contradiction to assumption n>2. Since $\tau^{\frac{2n}{m}}=\sigma^2$, $\sigma\tau^{\frac{2n}{m}}\sigma^{-1}=\tau^{\frac{2n}{m}}$. But $\sigma\tau^{\frac{2n}{m}}\sigma^{-1}=(\sigma\tau\sigma^{-1})^{\frac{2n}{m}}=\tau^{\frac{-2n}{m}}$, so $\tau^{\frac{2n}{m}}=\tau^{\frac{-2n}{m}}$ and $\tau^{\frac{4n}{m}}=1$. Hence $n|\frac{n}{m}$ and m|4. Therefore, m=2,4.

Let N/F be a Galois extension with Galois group G(N/F)=G where G is the group constructed above. Let L be the fixed field of $<\tau>$. Assume $\operatorname{char} F \not\mid n$ and assume that F contains a primitive n-th root of 1. Then $N=L(\alpha^{\frac{1}{n}})$ for some $\alpha\in L^*$ since N/L is a cyclic extension of degree n. Here, $\alpha^{\frac{1}{n}}$ denotes a fixed n-th root of α in N. We have $\sigma|_L$ has order 2 since $\sigma\not\in <\tau>$. Note that $N=L(\alpha^{\frac{1}{n}})=L(\sigma(\alpha)^{\frac{1}{n}})$ since N/F is a Galois extension. Kummer theory implies $\sigma(\alpha)=\alpha^j\beta^n$ for some $\beta\in L$ and $\gcd(j,n)=1$. (cf. [2, Th.8.24, p.497])

Since $G(N/L)=\langle \tau \rangle$, $\tau(\alpha^{\frac{1}{n}})=\zeta^{i}\alpha^{\frac{1}{n}}$ where ζ is a primitive n-th root of 1 and gcd(i,n)=1. By relabeling, we may assume i=1. Thus $\tau(\alpha^{\frac{1}{n}})=\zeta\alpha^{\frac{1}{n}}$. Since $\sigma(\alpha^{\frac{1}{n}})$, $\alpha^{\frac{i}{n}}\beta$ are roots of $x^n-\sigma(\alpha)$, $\sigma(\alpha^{\frac{1}{n}})=\alpha^{\frac{i}{n}}\beta\zeta^i$ for some $i, 0 \leq i \leq n-1$. We may replace β by $\beta\zeta^i$, since $\beta^n=(\beta\zeta^i)^n$. Thus, we may assume $\sigma(\alpha^{\frac{1}{n}})=\alpha^{\frac{i}{n}}\beta$. Now we consider the equation $\sigma\tau(\alpha^{\frac{1}{n}})=\tau^{-1}\sigma(\alpha^{\frac{1}{n}}); \ \sigma\tau(\alpha^{\frac{1}{n}})=\sigma(\zeta\alpha^{\frac{1}{n}})=\zeta\alpha^{\frac{i}{n}}\beta$, and $\tau^{-1}\sigma(\alpha^{\frac{1}{n}})=\tau^{-1}(\alpha^{\frac{i}{n}}\beta)=\beta\tau^{-1}(\alpha^{\frac{i}{n}})=\beta\tau^{-1}(\alpha^{\frac{1}{n}})^j=\beta(\zeta^{-1}\alpha^{\frac{i}{n}})^j=\beta\zeta^{-j}\alpha^{\frac{i}{n}}$. Thus, $\zeta=\zeta^{-j}$ and so $j\equiv -1$ mod n. We may assume j=-1 and conclude $\sigma(\alpha)=\alpha^{-1}\beta^n$ for a possibly different $\beta\in L$. Therefore, $N_{L/F}(\alpha)=\alpha\sigma(\alpha)=\beta^n\in L^n\cap F$, where $N_{L/F}$ is the norm map.

LEMMA 2. Let L/F be any Galois quadratic extension and let $\sigma \in G(L/F)$, $\sigma \neq id$. Assume F contains all n-th roots of 1. Then

$$L^{n} \cap F = \begin{cases} F^{n} \cup a^{\frac{n}{2}}F^{n} & \text{if } n \text{ is even and } L = F(\sqrt{a}), \text{ where } a \in F, \\ F^{n} & \text{if } n \text{ is even and } \operatorname{char} F = 2, \\ F^{n} & \text{if } n \text{ is odd.} \end{cases}$$

PROOF. Clearly " \supseteq " holds. Let $\lambda \in L$, and $\lambda^n \in L^n \cap F$. Then $\sigma(\lambda^n) = \lambda^n$ and $\sigma(\lambda) = \zeta \lambda$ where ζ is some n-th root of 1. Since $\frac{\sigma(\lambda)}{\lambda} \in F$, we have $\frac{\sigma(\lambda)}{\lambda} = \sigma\left(\frac{\sigma(\lambda)}{\lambda}\right) = \frac{\sigma^2(\lambda)}{\sigma(\lambda)} = \frac{\lambda}{\sigma(\lambda)}$. Thus $\lambda^2 = \sigma(\lambda)^2 = \sigma(\lambda^2)$ and so $\lambda^2 \in F$. If $\lambda \in F$, then $\lambda^n \in F^n$. If $\lambda \notin F$, then $L = F(\sqrt{b})$ where $\lambda^2 = b \in F$. So, $char F \neq 2$. We must have n even for if n is odd then $\lambda^2, \lambda^n \in F$ would imply $\lambda \in F$. Now $\lambda^n = (\lambda^2)^{\frac{n}{2}} = b^{\frac{n}{2}} \in b^{\frac{n}{2}} F^n$. Suppose L also equals $F(\sqrt{a})$. Then $\frac{a}{b} \in F^2$ and $\frac{a^{\frac{n}{2}}}{b^{\frac{n}{2}}} \in F^n$. This implies $a^{\frac{n}{2}}F^n = b^{\frac{n}{2}}F^n$ and the proof is complete.

Assume n is even and $L = F(\sqrt{a})$, the fixed field of $< \tau >$ in $N = L(\alpha^{\frac{1}{n}})$ given in after Lemma 1. We now determine when $N_{N/F}(\alpha) \in F^n$.

PROPOSITION 3. If n is even and the fixed field of $\langle \tau \rangle$, $L = F(\sqrt{a})$, then $N_{N/F}(\alpha) \in F^n$ if and only if m = 2.

PROOF. $\sigma^2(\alpha^{\frac{1}{n}}) = \sigma(\alpha^{-\frac{1}{n}}\beta) = \sigma(\alpha^{-\frac{1}{n}})\sigma(\beta) = \alpha^{\frac{1}{n}}\beta^{-1}\sigma(\beta)$. So, m = 2 iff $\sigma^2 = id_N$ iff $\sigma^2(\alpha^{\frac{1}{n}}) = \alpha^{\frac{1}{n}}$ (since $N = L(\alpha^{\frac{1}{n}})$ and $\sigma^2|_L = id_L$) iff $\beta^{-1}\sigma(\beta) = 1$, i.e., $\sigma(\beta) = \beta$ iff $\beta \in F$ (since $\beta \in L$ and $\sigma|_L \neq id_L$) iff $\beta^n \in F^n$ (since F contains all n-th roots of 1) iff $N_{L/F}(\alpha) \in F^n$ (since $N_{L/F}(\alpha) = \beta^n$).

REMARK 1. The above proposition can be proved by computing the corestriction of a symbol algebra $(\alpha, x; L(x))_n$ from L(x) to F(x) where L(x) is the rational function field over F, using the formula of corestriction given in [1, (1.3)] and Projection Formula ([1, Prop.1.4] or [4, Th.3.1])

Now, we are ready to give our main theorem.

THEOREM 4. Let L/F be a Galois quadratic extension of fields such that F contains a primitive n-th root of 1. Let $\alpha \in L^*$ and assume $N_{L/F}(\alpha) \in L^n \cap F$. Let $N = L(\alpha^{\frac{1}{n}})$ where $\alpha^{\frac{1}{n}}$ denotes a fixed n-th root of α . Let m = [N:L]. Then N/F is a Galois extension and

- (i) $G(N/F) \cong D_m$ if $N_{L/F}(\alpha) \in F^n$,
- (ii) $G(N/F) \cong$ generalized quaternion group of order 2m if $N_{L/F}(\alpha) \notin F^n$, and m is even.

PROOF. Let $G(N/F)=\{\mathrm{id_L},\ \sigma\}$. By assumption, $\alpha\sigma(\alpha)=N_{L/F}(\alpha)=\beta^n$ for some $\beta\in L^*$. So $\sigma(\alpha)=\alpha^{-1}\beta^n$. By Kummer theory ([2, Th. 8.24, pp.497]) $L(\alpha^{\frac{1}{n}})=L(\sigma(\alpha)^{\frac{1}{n}})$ and so N/F is a Galois extension as N is the composite of L and a splitting field of $(x^n-\alpha)(x^n-\sigma(\alpha))$ over F. Let G=G(N/F). As L contains a primitive n-th root of 1,N/L is a cyclic extension. Let $G(N/L)=<\tau>$. Then $o(\tau)=m$. Denote an automorphism of N extending σ by σ , again. Then $\sigma(\alpha^{\frac{1}{n}})=\alpha^{-\frac{1}{n}}\beta\zeta$ where $\zeta^n=1$. As $\beta^n=(\beta\zeta)^n$, we can replace β by $\beta\zeta$ to assume $\sigma(\alpha^{\frac{1}{n}})=\alpha^{-\frac{1}{n}}\beta$. Then $\sigma^2(\alpha^{\frac{1}{n}})=\sigma(\alpha^{-\frac{1}{n}}\beta)=\sigma(\beta)\alpha^{\frac{1}{n}}\beta^{-1}$.

(i) If $N_{L/F}(\alpha) = \beta^n \in F^n$, then $\beta \in F$ as F contains a primitive n-th root of 1. It follows $\sigma^2(\alpha^{\frac{1}{n}}) = \alpha^{\frac{1}{n}}$. This implies $\sigma^2 = id_N$ as $N = L(\alpha^{\frac{1}{n}})$. As $\tau(\alpha^{\frac{1}{n}}) = \zeta_1 \alpha^{\frac{1}{n}}$ for some primitive m-th root ζ_1 of 1 in F, $\sigma\tau(\alpha^{\frac{1}{n}}) = \zeta_1\sigma(\alpha^{\frac{1}{n}}) = \zeta_1\sigma(\alpha^{\frac{1}{n}}) = \zeta_1\sigma(\alpha^{\frac{1}{n}})$. Also, $\sigma\tau|_L = \tau^{-1}\sigma|_L$. So,

$$\begin{split} &\sigma\tau=\tau^{-1}\sigma,\,o(\sigma)=2,\,\text{and}\,\,o(\tau)=m.\,\,\text{Hence}\,\,G(N/F)=<\tau,\sigma>\cong D_m.\\ &\text{(ii) If}\,\,N_{L/F}(\alpha)=\beta^n\not\in F^n,\,\text{then}\,\,\beta^n\in a^{\frac{n}{2}}F^n\,\,\text{where}\,\,L=F(\sqrt{a})\,\,\text{by Lemma}\\ &2\,\,\text{as}\,\,\beta^n=N_{L/F}(\alpha)\in L^n\cap F.\,\,\,\text{So}\,\,\beta\in\sqrt{a}F,\,\,\text{and}\,\,\sigma(\beta)\beta^{-1}=-1.\,\,\,\text{It}\\ &\text{follows}\,\,o(\sigma)=4.\,\,\,\text{Also},\,o(\tau)=m,\,\sigma\tau=\tau^{-1}\sigma,\,\text{and}\,\,\sigma^2=\tau^{\frac{m}{2}}\,\,\text{as}\,\,\sigma^2(\alpha^{\frac{1}{n}})=\\ &-\alpha^{\frac{1}{n}}=\zeta_1^{\frac{m}{2}}\alpha^{\frac{1}{n}}=\tau^{\frac{m}{2}}(\alpha^{\frac{1}{n}})\,\,\text{since}\,\,m\,\,\text{is even.}\,\,\text{Hence},\,G(N/F)=<\tau,\sigma>\cong\\ &\text{generalized quaternion group of order}\,\,2m. \end{split}$$

ACKNOWLEDGEMENTS. We wish to thank David B. Leep for helpful suggestions.

References

- Y.-S. Hwang, The corestrictions of valued division algebras of Henselian Fields I, Pacific J. Math. 170 (1995), 53-81.
- [2] N. Jacobson, Basic Algebra II, Freeman and Company, 1980.
- [3] G. Maile and B. H. Matzat, Inverse Galois Theory, Springer, Berlin, 1999.
- [4] M. Suzuki, Group Theory I, Springer-Verlag, New York, 1982.
- [5] J.-P. Tignol, On the corestriction of central simple algebras, Math. Z. 194 (1987), 267-274.
- [6] H. Völklein, Groups as Galois Groups: An Introduction, Cambridge Univ. Press, Cambridge, England, 1996.

Department of Mathematics Korea University Seoul 136-701, Korea E-mail: yhwang@korea.ac.kr