• Title/Summary/Keyword: general mathematics

Search Result 1,664, Processing Time 0.028 seconds

GENERALIZED (C, r)-HANKEL OPERATOR AND (R, r)-HANKEL OPERATOR ON GENERAL HILBERT SPACES

  • Jyoti Bhola;Bhawna Gupta
    • Communications of the Korean Mathematical Society
    • /
    • v.38 no.3
    • /
    • pp.821-835
    • /
    • 2023
  • Hankel operators and their variants have abundant applications in numerous fields. For a non-zero complex number r, the r-Hankel operators on a Hilbert space 𝓗 define a class of one such variant. This article introduces and explores some properties of two other variants of Hankel operators namely kth-order (C, r)-Hankel operators and kth-order (R, r)-Hankel operators (k ≥ 2) which are closely related to r-Hankel operators in such a way that a kth-order (C, r)-Hankel matrix is formed from rk-Hankel matrix on deleting every consecutive (k - 1) columns after the first column and a kth-order (R, rk)-Hankel matrix is formed from r-Hankel matrix if after the first column, every consecutive (k - 1) columns are deleted. For |r| ≠ 1, the characterizations for the boundedness of these operators are also completely investigated. Finally, an appropriate approach is also presented to extend these matrices to two-way infinite matrices.

The Differences of Attribution Tendency and Self-regulated Learning Strategy between Gifted Students and General Students in Elementary School (초등 영재와 일반학생간의 학업성패에 대한 귀인성향과 자기조절학습전략 사용의 차이)

  • Lee, Shin-Dong;You, Mi-Sun;Choi, Byung-Yeon
    • Journal of Gifted/Talented Education
    • /
    • v.18 no.3
    • /
    • pp.425-442
    • /
    • 2008
  • This study aims to investigate the differences between gifted students and general students in elementary school by comparing their attribution tendency and self-regulated learning strategy and verify the attribution tendency and self-regulated learning strategy of gifted students in elementary school. The subjects of this study were 105 gifted students in the fifth and sixth grades from the gifted education center and 105 general students in the fifth and sixth grades. The study findings were as follows: First, The gifted students showed a higher score on the success attribution while the general students showed a higher score on the failure attribution Second, the gifted students showed a higher score on all over the self-regulated learning strategy with its subordinate factors. Third, the gifted students in humanity showed a higher score on the control factor of cognitive strategy, the gifted students in mathematics on the action control factor of motive strategy and the gifted students in science on the other subordinate factors and all over the self-regulated learning strategy. Fourth, the boys showed a higher score on the factor of action control while the girls on all the other subordinate factors and all over the self-regulated learning strategy.

A Case Study on the classroom life and the identity of the Elementary Mathematics Gifted Education (초등수학 영재교육원의 교실 생활과 정체성에 대한 사례연구)

  • Lee, Hak-Ro;Ryu, Sung-Rim
    • Communications of Mathematical Education
    • /
    • v.25 no.1
    • /
    • pp.99-118
    • /
    • 2011
  • For this case study of gifted education, two classrooms in two locations, show life in general of the gifted educational system. And for this case study the identity of teachers and the gifted, help to activate the mathematically gifted education for these research questions, which are as followed: Firstly, how is the gifted education classroom life? Secondly, what kind of identity do the teachers and gifted students bring to mathematics, mathematics teaching and mathematics learning? Being selected in the gifted children's education center solves the research problem of characteristic and approach. Backed by the condition and the permission possibility, 2 selected classes and 2 people, which are coming and going. Gifted education classroom life, the identity of teachers and gifted students in mathematics and mathematics teaching and mathematic learning. It will be for 3 months, with various recordings and vocal instruction between teacher and students. Collected observations and interviews will be analyzed over the course of instruction. The results analyzed include, social participation, structure, and the formation of the gifted education classroom life. The organization of classes were analyzed by the classes conscious levels to collect and retain data. The classes verification levels depended on the program's first class incentive, teaching and learning levels and understanding of gifted math. A performance assessment will be applied after the final lesson and a consultation with parents and students after the final class. The six kinds of social participation structure come out of the type of the most important roles in gifted education accounts, for these types of group discussions and interactions, students must have an interaction or individual activity that students can use, such as a work product through the real materials, which release teachers and other students for that type of questions to evaluate. In order for the development of meaningful mathematical concepts to formulate, mathematical principles require problem solving among all students, which will appear in the resolution or it will be impossible to map the meaning of the instruction from which it was formed. These results show the analysis of the mathematics, mathematics teaching, mathematics learning and about the identity of the teachers and gifted. Gifted education teachers are defined by gifted math, which is more difficult and requires more differentiated learning, suitable for gifted students. Gifted was defined when higher level math was created and challenged students to deeper thinking. Gifted students think that gifted math is creative learning and they are forward or passive to one-way according to the education atmosphere.

An Analysis on the Responses and the Behavioral Characteristics between Mathematically Promising Students and Normal Students in Solving Open-ended Mathematical Problems (수학 영재교육 대상 학생과 일반 학생의 개방형 문제해결 전략 및 행동 특성 분석)

  • Kim, Eun-Hye;Park, Man-Goo
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.15 no.1
    • /
    • pp.19-38
    • /
    • 2011
  • The purpose of this study was to analyze the responses and the behavioral characteristics between mathematically promising students and normal students in solving open-ended problems. For this study, 55 mathematically promising students were selected from the Science Education Institute for the Gifted at Seoul National University of Education as well as 100 normal students from three 6th grade classes of a regular elementary school. The students were given 50 minutes to complete a written test consisting of five open-ended problems. A post-test interview was also conducted and added to the results of the written test. The conclusions of this study were summarized as follows: First, analysis and grouping problems are the most suitable in an open-ended problem study to stimulate the creativity of mathematically promising students. Second, open-ended problems are helpful for mathematically promising students' generative learning. The mathematically promising students had a tendency to find a variety of creative methods when solving open-ended problems. Third, mathematically promising students need to improve their ability to make-up new conditions and change the conditions to solve the problems. Fourth, various topics and subjects can be integrated into the classes for mathematically promising students. Fifth, the quality of students' former education and its effect on their ability to solve open-ended problems must be taken into consideration. Finally, a creative thinking class can be introduce to the general class. A number of normal students had creativity score similar to those of the mathematically promising students, suggesting that the introduction of a more challenging mathematics curriculum similar to that of the mathematically promising students into the general curriculum may be needed and possible.

  • PDF

Enhanced Equidistant Chosen Message Power Analysis of RSA-CRT Algorithm (RSA-CRT의 향상된 등간격 선택 평문 전력 분석)

  • Park, Jong-Yeon;Han, Dong-Guk;Yi, Ok-Yeon;Choi, Doo-Ho
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.48 no.2
    • /
    • pp.117-126
    • /
    • 2011
  • RSA-CRT algorithm is widely used to improve the performance of RSA algorithm. However, it is also vulnerable to side channel attacks like as general RSA. One of the power attacks on RSA-CRT, proposed by Boer et al., is a power analysis which utilizes reduction steps of RSA-CRT algorithm with equidistant chosen messages, called as ECMPA(Equidistant Chosen Messages Power Analysis) or MRED(Modular Reduction on Equidistant Data) analysis. This method is to find reduction output value r=xmodp which has the same equidistant patterns as equidistant messages. One can easily compute secret prime p from exposure of r. However, the result of analysis from a reduction step in [5] is remarkably different in our experiment from what Boer expected in [5]. Especially, we found that there are Ghost key patterns depending on the selection of attack bits and selected reduction algorithms. Thus, in this paper we propose several Ghost key patterns unknown to us until now, then we suggest enhanced and detailed analyzing methods.

A Study on Understanding of Fraction Division of Elementary Mathematical Gifted Students (초등수학영재의 분수 나눗셈의 이해에 관한 연구)

  • Kim, Young A;Kim, Dong Hwa;Noh, Ji Hwa
    • East Asian mathematical journal
    • /
    • v.32 no.4
    • /
    • pp.565-587
    • /
    • 2016
  • The purpose of this study was to analyze the understanding of the meaning of fraction division and fraction division algorithm of elementary mathematical gifted students through the process of problem posing and solving activities. For this goal, students were asked to pose more than two real-world problems with respect to the fraction division of ${\frac{3}{4}}{\div}{\frac{2}{3}}$, and to explain the validity of the operation ${\frac{3}{4}}{\div}{\frac{2}{3}}={\frac{3}{4}}{\times}{\frac{3}{2}}$ in the process of solving the posed problems. As the results, although the gifted students posed more word problems in the 'inverse of multiplication' and 'inverse of a cartesian product' situations compared to the general students and pre-service elementary teachers in the previous researches, most of them also preferred to understanding the meaning of fractional division in the 'measurement division' situation. Handling the fractional division by converting it into the division of natural numbers through reduction to a common denominator in the 'measurement division', they showed the poor understanding of the meaning of multiplication by the reciprocal of divisor in the fraction division algorithm. So we suggest following: First, instruction on fraction division based on various problem situations is necessary. Second, eliciting fractional division algorithm in partitive division situation is strongly recommended for helping students understand the meaning of the reciprocal of divisor. Third, it is necessary to incorporate real-world problem posing tasks into elementary mathematics classroom for fostering mathematical creativity as well as problem solving ability.

A Case Study of the Characteristics of Mathematically Gifted Elementary Students' Statistical Reasoning : Focus on the Recognition of Variability (초등수학영재들의 통계적 사고 특성 사례 분석: 변이성에 대한 인식을 중심으로)

  • Lee, Hyung-Sook;Lee, Kyeong-Hwa;Kim, Ji-Won
    • Journal of Educational Research in Mathematics
    • /
    • v.20 no.3
    • /
    • pp.339-356
    • /
    • 2010
  • It is important for children to develop statistical reasoning as they think through data. In particular, it is imperative to provide children instructional situations in which they are encouraged to consider variability in data because the ability to reason about variability is fundamental to the development of statistical reasoning. Many researchers argue that even highperforming mathematics students show low levels of statistical reasoning; interventions attending to pedagogical concerns about child ren's statistical reasoning are, thus, necessary. The purpose of this study was to investigate 15 gifted elementary students' various ways of understanding important statistical concepts, with particular attention given to 3 students' reasoning about data that emerged as they engaged in the process of generating and graphing data. Analysis revealed that in recognizing variability in a context involving data, mathematically gifted students did not show any difference from previous results with general students. The authors suggest that our current statistics education may not help elementary students understand variability in their development of statistical reasoning.

  • PDF

Teaching and Learning Concepts of Tangent in School Mathematics (학교 수학에서 접선 개념 교수 방안 연구)

  • 임재훈;박교식
    • Journal of Educational Research in Mathematics
    • /
    • v.14 no.2
    • /
    • pp.171-185
    • /
    • 2004
  • Students are exposed to a concept of tangent from a specific context of the relation between a circle and straight lines at the 7th grade. This initial experience might cause epistemological obstacles regarding learning concepts of tangent to additional curves. The paper provides a method of how to introduce a series of concepts of tangent in order to lead students to revise and improve the concept of tangent which they have. As students have chance to reflect and revise a series of concepts of tangent step by step, they realize the facts that the properties such as 'meeting the curve at one point' and 'touching but not cutting the curve' may be regarded as the proper definition of tangent in some limited contexts but are not essential in more general contexts. And finally students can grasp and appreciate that concept of tangent as the limit of secants and the relation between tangent and derivative.

  • PDF

A Study on the Function Education of Middle School Using the Technical Instruments (중학교 1학년 함수지도에서의 공학적 도구 활용에 관한 연구)

  • Chu, Soon-Jong;Kim, Yung-Hwan
    • Journal of the Korean School Mathematics Society
    • /
    • v.12 no.3
    • /
    • pp.189-209
    • /
    • 2009
  • One of the characteristics in math -abstract concept- makes the students find difficulties in understanding general ideas about math. This study is about how much do the modeling lessons using the technical instruments which is based on the realistic mathematical theory influence on understanding the mathematical concept. This study is based on one of the contents the first grade of middle school students study, the function, especially the meaning of it. Some brilliant students being the objects of this study, mathematically experimental modeling lesson was planned, conducted. Survey on the students' attitudes about math before and after the modeling classes and Questionnaire survey on the effectiveness about the modeling class were conducted and their attitudes were recorded also. This study tells that students show very meaningful changes before and after the modeling class and scientific knowledge seems to be very helpful for the students to understand the mathematical concept and solve the problems. When scientific research and development get together with mathematics, students will be more motivated and be able to form the right mathematical concept easily.

  • PDF

Comparative Analysis of the Contents of Functions in the Middle School Mathematics Textbooks in Korea and Germany (한국과 독일의 중학교 수학 교과서 분석을 통한 함수 내용 비교)

  • Huh, Nan;Ahn, Eun-Kyung;Ko, Ho-Kyoung
    • School Mathematics
    • /
    • v.13 no.2
    • /
    • pp.323-343
    • /
    • 2011
  • The study of 2011 education course revision proposal suggests that middle school level function shall be taught with emphasis on its role as tool to understand the situations of actual world, and the concept shall be extended in high school into formularized setting that integrate various fields based on middle school function. In revising education course, the circumstances of other countries are desired to be considered to keep abreast of international standard education courses. In this study, the textbooks of Gesamtschule a general school a school type similar to the education system in Korea among various school forms of Germany were selected to look into the characteristics of function introduction and teaching & learning in Germany, and the textbooks were compared and analyzed with those of Korea. As a result of comparison and analysis on the system and contents with emphasis on function area, German textbooks differed from the 7th revised education course on the introduction of function concept, contents development method and method of instructing on graph etc. Such differences are anticipated to serve as data for reference in the development of revised education courses and textbooks in Korea.

  • PDF