• Title/Summary/Keyword: gene mutations

Search Result 1,004, Processing Time 0.028 seconds

The Transcription Cofactor Swi6 of the Fusarium graminearum Is Involved in Fusarium Graminearum Virus 1 Infection-Induced Phenotypic Alterations

  • Son, Moonil;Lee, Yoonseung;Kim, Kook-Hyung
    • The Plant Pathology Journal
    • /
    • v.32 no.4
    • /
    • pp.281-289
    • /
    • 2016
  • The transcription cofactor Swi6 plays important roles in regulating vegetative growth and meiosis in Saccharomyces cerevisiae. Functions of Swi6 ortholog were also characterized in Fusarium graminearum which is one of the devastating plant pathogenic fungi. Here, we report possible role of FgSwi6 in the interaction between F. graminearum and Fusarium graminearum virus 1 (FgV1) strain DK21. FgV1 perturbs biological characteristics of host fungi such as vegetative growth, sporulation, pigmentation, and reduction of the virulence (hypovirulence) of its fungal host. To characterize function(s) of FgSWI6 gene during FgV1 infection, targeted deletion, over-expression, and complementation mutants were generated and further infected successfully with FgV1. Deletion of FgSwi6 led to severe reduction of vegetative growth even aerial mycelia while over-expression did not affect any remarkable alteration of phenotype in virus-free isolates. Virus-infected (VI) FgSWI6 deletion isolate exhibited completely delayed vegetative growth. However, VI FgSWI6 over-expression mutant grew faster than any other VI isolates. To verify whether these different growth patterns in VI isolates, viral RNA quantification was carried out using qRT-PCR. Surprisingly, viral RNA accumulations in VI isolates were similar regardless of introduced mutations. These results provide evidence that FgSWI6 might play important role(s) in FgV1 induced phenotype alteration such as delayed vegetative growth.

Evaluation of Japanese encephalitis virus vaccine strains currently used in pigs by molecular characterization

  • Lee, Jeong-Ah;Yang, Dong-Kun;Kim, Ha-Hyun;Kim, Sun-Young;Nah, Jin-Ju;Cho, Soo-Dong;Song, Jae-Young
    • Korean Journal of Veterinary Service
    • /
    • v.35 no.3
    • /
    • pp.169-174
    • /
    • 2012
  • Japanese encephalitis virus (JEV) is one of the main causes of viral encephalitis in human and animals. For over 30 years, a live attenuated JEV vaccine strain has been used in the veterinary field, and it is required to conduct quality evaluation studies on the commercial vaccines. For the quality control of live attenuated JEV vaccine, we investigated the nucleotide sequence similarity of prME gene derived from five JEV vaccines commercially available in pigs in Korea. The Vero cells infected with JEV vaccines showed specific cytopathic effect, which was characterized by rounding and detached cells. In the phylogenetic analysis, all of the vaccine strains showed a close relationship with the original vaccine seed strain (Anyang 300) and clustered into the genotype 3. In comparison of the nucleotide and deduced amino acid sequences of prME genes with the original strain, all JEV vaccine strains showed high amino acid similarity ranging from 98.9% to 99.5%, but had several point mutations, probably due to high mutation rates of viral RNA polymerase by several virus passages. Even though the current JEV vaccine strains have been maintained and produced for a long period of time, the genetic characterization of them have been rarely changed. However, since the mid 1990's, molecular epidemiology of JEV has been changed sharply from genotype 3 to genotype 1 in Korea, further studies on new vaccine strains to genotype 1 is required for more effective prevention in the field.

Characterization of the Stigma side Self-incompatibility Genes in a Self-compatible Brassica oleracea (자가화합성 양배추의 주두측 자가불화합성 유전자 해석)

  • Park, Jong-In;Lee, In-Ho;Jung, Gun-Ho;Nou, Ill-Sup
    • Journal of Life Science
    • /
    • v.19 no.11
    • /
    • pp.1666-1671
    • /
    • 2009
  • In Brassica, S locus glycoprotein (SLG) and S locus receptor kinase (SRK) genes function together for self-recognition in the self-incompatibility response. In addition, a water channel called aquaporins (MOD) is required for the self-incompatibility response. In this study, we isolated the SC-SLG, SC-SRK, and SC-MOD genes from a self-compatible line of B. oleracea. In the self-compatible line, the SC-SLG, SC-SRK, and SC-MOD genes showed the highest degree of sequence similarity with published data and to normal expression by RT-PCR. Therefore, it can be concluded that the SCR/SP11 gene of the B. oleracea pollen may not function and/or that mutations may occur in genes for self-incompatibility that are not linked to the S locus region.

A case of CHARGE syndrome featuring immunodeficiency and hypocalcemia

  • Son, Yu Yun;Lee, Byeonghyeon;Suh, Chae-Ri;Nam, Hyo-Kyoung;Lee, Jung Hwa;Hong, Young Sook;Lee, Joo Won
    • Journal of Genetic Medicine
    • /
    • v.12 no.1
    • /
    • pp.57-60
    • /
    • 2015
  • CHARGE syndrome (coloboma, heart defects, atresia choanae, retarded growth and development, genital hypoplasia, and ear abnormalities) is characterized by multiple malformations and is diagnosed using distinct consensus criteria. Mutations in the gene encoding chromodomain helicase DNA-binding protein 7 (CHD7) are the major cause of CHARGE syndrome. Clinical features of CHARGE syndrome considerably overlap those of 22q11.2 deletion syndrome. Of these features, immunodeficiency and hypocalcemia are frequently reported in patients with 22q11.2 deletion syndrome but are rarely reported in patients with CHARGE syndrome. In this report, we have described the case of a patient with typical phenotypes of 22q11.2 deletion syndrome but without the proven chromosome microdeletion. Mutation analysis of CHD7 identified a pathogenic mutation (c.2238+1G>A) in this patient. To our knowledge, this is the first case of CHARGE syndrome with immunodeficiency and hypocalcemia in Korea. Our observations suggest that mutation analysis of CHD7 should be performed for patients showing the typical phenotypes of 22q11.2 deletion syndrome but lacking the proven chromosome microdeletion.

Variable expression observed in a Korean family with Townes-Brocks syndrome caused by a SALL1 mutation

  • Seo, Yeon Jeong;Lee, Ko Eun;Ko, Jung Min;Kim, Gu-Hwan;Yoo, Han-Wook
    • Journal of Genetic Medicine
    • /
    • v.12 no.1
    • /
    • pp.44-48
    • /
    • 2015
  • Townes-Brocks syndrome (TBS) is a rare genetic disorder characterized by the classic triad of congenital anomalies of the anus, thumbs, and ears, with variable expressivity. Additionally, renal malformations, cardiac anomalies, and endocrine and eye abnormalities can accompany TBS, although less frequently. TBS is inherited in an autosomal dominant fashion; however, about 50% of patients have a family history of TBS and the remaining 50% have de novo mutations. SALL1, located on chromosome 16q12.1, is the only causative gene of TBS. SALL1 acts as a transcription factor and may play an important role in inducing the anomalies during embryogenesis. Clinical features of TBS overlap with those of other multiple anomaly syndromes, such as VACTERL syndrome, Baller-Gerold syndrome, Goldenhar syndrome, cat eye syndrome, and Holt-Oram syndrome. Consequently, there are some difficulties in differential diagnosis based on clinical manifestations. Herein, we report a Korean family with two generations of TBS that was diagnosed based on physical examination findings and medical history. Although the same mutation in SALL1 was identified in both the mother and the son, they displayed different clinical manifestations, suggesting a phenotypic diversity of TBS.

A novel GLA mutation in a Korean boy with an early cardiac manifestation of Fabry disease

  • Kwon, Soonhak;Park, Jin-Sung;Jung, Jae Hun;Hwang, Su Kyeong;Kim, Yeo Hyang;Lee, Yun Jeong
    • Journal of Genetic Medicine
    • /
    • v.15 no.1
    • /
    • pp.28-33
    • /
    • 2018
  • Fabry disease (FD) is a rare X-linked lysosomal storage disorder caused by the deficiency of ${\alpha}$-galactosidase A. Patients with classical FD present acroparesthesia, hypohidrosis, cornea verticillata, disseminated angiokeratoma, and microalbuminuria in childhood, and develop life-threatening renal, cardiac, and cerebrovascular complications typically after the fourth decade of life. To date, more than 700 mutations responsible for FD have been identified in the human GLA gene. Herein, we report a novel GLA mutation, c.1117_1141del25 (p.Gly373Profs*10), identified in an 11-year-old Korean boy with FD presenting early cardiac and neurologic manifestation and in other affected family members. The boy had acroparesthesia, hypohidrosis, cornea verticillata, and left ventricular hypertrophy. His mother and sister also had acroparesthesia. Two males on the mother's side had similar pain and died of unknown causes. The plasma ${\alpha}$-galactosidase A activity (4.1 nmol/hr/mg protein) of the patient was markedly lower than the mean value of the controls. The plasma level of globotriaosylsphingosine was elevated in the patient and all the carriers. We concluded the novel GLA mutation c.1117_1141del25 is a pathogenic mutation for FD, probably related to the early cardiac manifestation of FD.

Predictive value of C-reactive protein in response to macrolides in children with macrolide-resistant Mycoplasma pneumoniae pneumonia

  • Seo, Young Ho;Kim, Jang Su;Seo, Sung Chul;Seo, Won Hee;Yoo, Young;Song, Dae Jin;Choung, Ji Tae
    • Clinical and Experimental Pediatrics
    • /
    • v.57 no.4
    • /
    • pp.186-192
    • /
    • 2014
  • Purpose: The prevalence of macrolide-resistant Mycoplasma pneumoniae (MRMP) has increased worldwide. The aim of this study was to estimate the proportion of MRMP in a tertiary hospital in Korea, and to find potential laboratory markers that could be used to predict the efficacy of macrolides in children with MRMP pneumonia. Methods: A total of 95 patients with M. pneumoniae pneumonia were enrolled in this study. Detection of MRMP was based on the results of specific point mutations in domain V of the 23S rRNA gene. The medical records of these patients were reviewed retrospectively and the clinical course and laboratory data were compared. Results: The proportion of patients with MRMP was 51.6% and all MRMP isolates had the A2063G point mutation. The MRMP group had longer hospital stay and febrile period after initiation of macrolides. The levels of serum C-reactive protein (CRP) and interleukin-18 in nasopharyngeal aspirate were significantly higher in patients who did not respond to macrolide treatment. CRP was the only significant factor in predicting the efficacy of macrolides in patients with MRMP pneumonia. The area under the curve for CRP was 0.69 in receiver operating characteristic curve analysis, indicating reasonable discriminative power, and the optimal cutoff value was 40.7 mg/L. Conclusion: The proportion of patients with MRMP was high, suggesting that the prevalence of MRMP is rising rapidly in Korea. Serum CRP could be a useful marker for predicting the efficacy of macrolides and helping clinicians make better clinical decisions in children with MRMP pneumonia.

Incontinentia Pigmenti with Multiple Missing Teeth : Case Reports (다수의 치아결손을 동반한 색소실조증 환아의 치험례)

  • Choi, Shinae;Kim, Youngjin;Nam, Soonhyeun;Kim, Hyunjung
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.42 no.2
    • /
    • pp.180-187
    • /
    • 2015
  • Incontinentia pigmenti, also called Bloch-Sulzberger syndrome, is a rare X-linked inherited dominant disorder that affects females, but causes spontaneous abortion of prenatal males. Incontinentia pigmenti is a systemic disease with clinical features similar to ectodermal dysplasia, including congenitally missing teeth. The pathogenesis is related to gene mutations in NF-kappa-B essential modulator on chromosome Xq28. Incontinentia pigmenti is caused by a defect in the developmental stage of organs originating from the ectoderm or mesoderm and involves the skin, eyes, hair, teeth and central nervous system. This report discusses the management of three cases of 3 to 5 years old females with incontinentia pigmenti and accompanying multiple missing teeth. The cases had sparse hair, and showed oligodontia and anomalous crowns with supplementary cusps in the posterior teeth and conical anterior teeth. Removable space maintainers were applied, achieving improved esthetics, recovery of mastication and increased self-esteem in the patients.

Systemic and Cell-Type Specific Profiling of Molecular Changes in Parkinson's Disease

  • Lee, Yunjong
    • Interdisciplinary Bio Central
    • /
    • v.4 no.3
    • /
    • pp.6.1-6.12
    • /
    • 2012
  • Parkinson's disease (PD) is a complicated neurodegenerative disorder although it is oftentimes defined by clinical motor symptoms originated from age dependent and progressive loss of dopaminergic neurons in the midbrain. The pathogenesis of PD involves dopaminergic and nondopaminergic neurons in many brain regions and the molecular mechanisms underlying the death of different cell types still remain to be elucidated. There are indications that PD causing disease processes occur in a global scale ranging from DNA to RNA, and proteins. Several PD-associated genes have been reported to play diverse roles in controlling cellular functions in different levels, such as chromatin structure, transcription, processing of mRNA, translational modulation, and posttranslational modification of proteins. The advent of quantitative high throughput screening (HTS) tools makes it possible to monitor systemic changes in DNA, RNA and proteins in PD models. Combined with dopamine neuron isolation or derivation of dopamine neurons from PD patient specific induced pluripotent stem cells (PD iPSCs), HTS techonologies will provide opportunities to draw PD causing sequences of molecular events in pathologically relevant PD samples. Here I discuss previous studies that identified molecular functions in which PD genes are involved, especially those signaling pathways that can be efficiently studied using HTS methodologies. Brief descriptions of quantitative and systemic tools looking at DNA, RNA and proteins will be followed. Finally, I will emphasize the use and potential benefits of PD iPSCs-derived dopaminergic neurons to screen signaling pathways that are initiated by PD linked gene mutations and thus causative for dopaminergic neurodegneration in PD.

The effect of rod domain A148V mutation of neurofilament light chain on filament formation

  • Lee, In-Bum;Kim, Sung-Kuk;Chung, Sang-Hee;Kim, Ho;Kwon, Taeg-Kyu;Min, Do-Sik;Chang, Jong-Soo
    • BMB Reports
    • /
    • v.41 no.12
    • /
    • pp.868-874
    • /
    • 2008
  • Neurofilaments (NFs) are neuronal intermediate filaments composed of light (NF-L), middle (NF-M), and heavy (NF-H) subunits. NF-L self-assembles into a "core" filament with which NF-M or NF-H co-assembles to form the neuronal intermediate filament. Recent reports show that point mutations of the NF-L gene result in Charcot-Marie-Tooth disease (CMT). However, the most recently described rod domain mutant of human NF-L (A148V) has not been characterized in cellular level. We cloned human NF-L and used it to engineer the A148V. In phenotypic analysis using SW13 cells, A148V mutation completely abolished filament formation despite of presence of NF-M. Moreover, A148V mutation reduced the levels of in vitro self-assembly using GST-NF-L (H/R) fusion protein whereas control (A296T) mutant did not affect the filament formation. These results suggest that alanine at position 148 is essentially required for NF-L self-assembly leading to subsequent filament formation in neuronal cells.