DOI QR코드

DOI QR Code

The effect of rod domain A148V mutation of neurofilament light chain on filament formation

  • Lee, In-Bum (Department of Life Science, College of Natural Science, Daejin University) ;
  • Kim, Sung-Kuk (Department of Life Science, College of Natural Science, Daejin University) ;
  • Chung, Sang-Hee (Department of Life Science, College of Natural Science, Daejin University) ;
  • Kim, Ho (Department of Life Science, College of Natural Science, Daejin University) ;
  • Kwon, Taeg-Kyu (Department of Immunology, College of Medicine, Keimyung University) ;
  • Min, Do-Sik (Department of Molecular Biology, College of Natural Science, Pusan National University) ;
  • Chang, Jong-Soo (Department of Life Science, College of Natural Science, Daejin University)
  • Published : 2008.12.31

Abstract

Neurofilaments (NFs) are neuronal intermediate filaments composed of light (NF-L), middle (NF-M), and heavy (NF-H) subunits. NF-L self-assembles into a "core" filament with which NF-M or NF-H co-assembles to form the neuronal intermediate filament. Recent reports show that point mutations of the NF-L gene result in Charcot-Marie-Tooth disease (CMT). However, the most recently described rod domain mutant of human NF-L (A148V) has not been characterized in cellular level. We cloned human NF-L and used it to engineer the A148V. In phenotypic analysis using SW13 cells, A148V mutation completely abolished filament formation despite of presence of NF-M. Moreover, A148V mutation reduced the levels of in vitro self-assembly using GST-NF-L (H/R) fusion protein whereas control (A296T) mutant did not affect the filament formation. These results suggest that alanine at position 148 is essentially required for NF-L self-assembly leading to subsequent filament formation in neuronal cells.

Keywords

References

  1. Lee, M.K., Xu, Z., Wong, P.C. and Cleveland, D.W. (1993) Neurofilaments are obligate heteropolymers in vivo. J. Cell Biol. 122, 1337-1350 https://doi.org/10.1083/jcb.122.6.1337
  2. Ching, G.Y. and Liem, R.K. (1993) Assembly of type IV neuronal intermediate filaments in nonneuronal cells in the absence of preexisting cytoplasmic intermediate filaments. J. Cell Biol. 122, 1323-1335. https://doi.org/10.1083/jcb.122.6.1323
  3. Nakagawa, T., Chen, J., Zhang, Z., Kanai, Y. and Hirokawa, N. (1995) Two distinct functions of the carboxyl- terminal tail domain of NF-M upon neurofilament assembly: cross-bridge formation and longitudinal elongation of filaments. J. Cell Biol. 129, 411-429. https://doi.org/10.1083/jcb.129.2.411
  4. Al-Chalabi, A. and Miller, C.C. (2003) Neurofilaments and neurological disease. Bioessays 25, 346-355. https://doi.org/10.1002/bies.10251
  5. Fuchs, E. and Weber, K. (1994) Intermediate filaments: structure, dynamics, function, and disease. Annu. Rev. Biochem. 63, 345-382. https://doi.org/10.1146/annurev.bi.63.070194.002021
  6. Grant, P. and Pant, H.C. (2000) Neurofilament protein synthesis and phosphorylation. J. Neurocytol. 29, 843- 872. https://doi.org/10.1023/A:1010999509251
  7. Pant, H.C. and Veeranna, V. (1995) Neurofilament phosphorylation. Biochem. Cell Biol. 73, 575-592. https://doi.org/10.1139/o95-063
  8. Nixon, R.A., Paskevich, P.A., Sihag, R.K. and Thayer, C.Y. (1994) Phosphorylation on carboxyl terminus domains of neurofilament proteins in retinal ganglion cell neurons in vivo: influences on regional neurofilament accumulation, interneurofilament spacing, and axon caliber. J. Cell Biol. 126, 1031-1046. https://doi.org/10.1083/jcb.126.4.1031
  9. Betts, J.C., Blackstock, W.P., Ward, M.A. and Anderton, B.H. (1997) Identification of phosphorylation sites on neurofilament proteins by nanoelectrospray mass spectrometry. J. Biol. Chem. 272, 12922-12927. https://doi.org/10.1074/jbc.272.20.12922
  10. Heins, S., Wong, P.C., Muller, S., Goldie, K., Cleveland, D.W. and Aebi, U. (1993) The rod domain of NF-L determines neurofilament architecture, whereas the end domains specify filament assembly and network formation. J. Cell Biol. 123, 1517-1533. https://doi.org/10.1083/jcb.123.6.1517
  11. Geisler, N. and Weber, K. (1981) Self-assembly in vitro of the 68,000 molecular weight component of the mammalian neurofilament triplet proteins into intermediate-sized filaments. J. Mol. Biol. 151, 565-571. https://doi.org/10.1016/0022-2836(81)90011-5
  12. Wong, P.C. and Cleveland, D.W. (1990) Characterization of dominant and recessive assembly-defective mutations in mouse neurofilament NF-M. J. Cell Biol. 111, 1987- 2003. https://doi.org/10.1083/jcb.111.5.1987
  13. Monteiro, M.J., Hoffman, P.N., Gearhart, J.D. and Cleveland, D.W. (1990) Expression of NF-L in both neuronal and nonneuronal cells of transgenic mice: increased neurofilament density in axons without affecting caliber. J. Cell Biol. 111, 1543-1557. https://doi.org/10.1083/jcb.111.4.1543
  14. Herrmann, H. and Aebi, U. (2000) Intermediate filaments and their associates: multi-talented structural elements specifying cytoarchitecture and cytodynamics. Curr. Opin. Cell Biol. 12, 79-90. https://doi.org/10.1016/S0955-0674(99)00060-5
  15. Lee, M.K. and Cleveland, D.W. (1996) Neuronal intermediate filaments. Annu. Rev. Neurosci. 19, 187-217. https://doi.org/10.1146/annurev.ne.19.030196.001155
  16. Choi, B.O., Lee, M.S., Shin, S.H., Hwang, J.H., Choi, K.G., Kim, W.K., Sunwoo, I.N., Kim, N.K. and Chung, K.W. (2004) Mutational analysis of PMP22, MPZ, GJB1, EGR2 and NEFL in Korean Charcot-Marie-Tooth neuropathy patients. Hum. Mutat. 24, 185-186.
  17. De Jonghe, P., Mersivanova, I., Nelis, E., Del Favero, J., Martin, J.J., Van Broeckhoven, C., Evgrafov, O. and Timmerman, V. (2001) Further evidence that neurofilament light chain gene mutations can cause Charcot- Marie-Tooth disease type 2E. Ann. Neurol. 49, 245-249. https://doi.org/10.1002/1531-8249(20010201)49:2<245::AID-ANA45>3.0.CO;2-A
  18. Fabrizi, G.M., Cavallaro, T., Angiari, C., Bertolasi, L., Cabrini, I., Ferrarini, M. and Rizzuto, N. (2004) Giant axon and neurofilament accumulation in Charcot- Marie- Tooth disease type 2E. Neurologyo 62, 1429-1431. https://doi.org/10.1212/01.WNL.0000120664.07186.3C
  19. Georgiou, D.M., Zidar, J., Korosec, M., Middleton, L.T., Kyriakides, T. and Christodoulou, K. (2002) A novel NF-L mutation Pro22Ser is associated with CMT2 in a large Slovenian family. Neurogenetics 4, 93-96. https://doi.org/10.1007/s10048-002-0138-4
  20. Jordanova, A., De Jonghe, P., Boerkoel, C.F., Takashima, H., De Vriendt, E., Ceuterick, C., Martin, J.J., Butler, I.J., Mancias, P. and Papasozomenos, S., et al. (2003) Mutations in the neurofilament light chain gene (NEFL) cause early onset severe Charcot-Marie-Tooth disease. Brain 126, 590- 597. https://doi.org/10.1093/brain/awg059
  21. Mersiyanova, I.V., Perepelov, A.V., Polyakov, A.V., Sitnikov, V.F., Dadali, E.L., Oparin, R.B., Petrin, A.N. and Evgrafov, O.V. (2000) A new variant of Charcot-Marie- Tooth disease type 2 is probably the result of a mutation in the neurofilament-light gene. Am. J. Hum. Genet. 67, 37-46. https://doi.org/10.1086/302962
  22. Zuchner, S., Vorgerd, M., Sindern, E. and Schroder, J.M. (2004) The novel neurofilament light (NEFL) mutation Glu397Lys is associated with a clinically and morphologically heterogeneous type of Charcot-Marie-Tooth neuropathy. Neuromuscul. Disord. 14, 147-157. https://doi.org/10.1016/j.nmd.2003.10.003
  23. Gu, L., Troncoso, J.C., Wade, J.B. and Monteiro, M.J. (2004) In vitro assembly properties of mutant and chimeric intermediate filament proteins: insight into the function of sequences in the rod and end domains of IF. Exp. Cell Res. 298, 249-261. https://doi.org/10.1016/j.yexcr.2004.04.020
  24. Carter, J., Gragerov, A., Konvicka, K., Elder, G., Weinstein, H. and Lazzarini, R.A. (1998) Neurofilament (NF) assembly; divergent characteristics of human and rodent NF-L subunits. J. Biol. Chem. 273, 5101-5108. https://doi.org/10.1074/jbc.273.9.5101
  25. Sarria, A.J., Nordeen, S.K. and Evans, R.M. (1990) Regulated expression of vimentin cDNA in cells in the presence and absence of a preexisting vimentin filament network. J. Cell Biol. 111, 553-565. https://doi.org/10.1083/jcb.111.2.553
  26. Kim, S.K., Cho, S.M., Lee, I.B., Lee, Y.H., Kang, J.H., Choi, J.H., Suh, P.G. and Chang, J.S. (2007) In vitro assay of neurofilament light chain self-assembly using truncated mutants. J. Neurosci. Methods 161, 199-204. https://doi.org/10.1016/j.jneumeth.2006.10.022
  27. Sasaki, T., Gotow, T., Shiozaki, M., Sakaue, F., Saito, T., Julien, J.P., Uchiyama, Y. and Hisanaga, S. (2006) Aggregate formation and phosphorylation of neurofilament-L Pro22 Charcot-Marie-Tooth disease mutants. Hum. Mol. Genet. 15, 943-952. https://doi.org/10.1093/hmg/ddl011
  28. Levy, Y., Hanan, E., Solomon, B. and Becker, O.M. (2001) Helix-coil transition of PrP106-126: molecular dynamic study. Proteins 45, 382-396. https://doi.org/10.1002/prot.1157
  29. Prusiner, S.B., Scott, M.R., DeArmond, S.J. and Cohen, F.E. (1998) Prion protein biology. Cell 93, 337-348. https://doi.org/10.1016/S0092-8674(00)81163-0
  30. Inouye, H. and Kirschner, D.A. (1998) Polypeptide chain folding in the hydrophobic core of hamster scrapie prion: analysis by X-ray diffraction. J. Struct. Biol. 122, 247-255. https://doi.org/10.1006/jsbi.1998.3998
  31. Kim, N.H. and Kang, J.H. (2003) Oxidative modification of neurofilament-L by copper-catalyzed reaction. J. Biochem. Mol. Biol. 36, 488-492. https://doi.org/10.5483/BMBRep.2003.36.5.488
  32. Smith, P.K., Krohn, R.I., Hermanson, G.T., Mallia, A.K., Gartner, F.H., Provenzano, M.D., Fujimoto, E.K., Goeke, N.M., Olson, B.J. and Klenk, D.C. (1985) Measurement of protein using bicinchoninic acid. Anal. Biochem. 150, 76-85. https://doi.org/10.1016/0003-2697(85)90442-7

Cited by

  1. Neuronal intermediate filaments and neurodegenerative disorders vol.80, pp.4-5, 2009, https://doi.org/10.1016/j.brainresbull.2009.06.004
  2. Phosphatidylinositol phosphates directly bind to neurofilament light chain (NF-L) for the regulation of NF-L self assembly vol.43, pp.3, 2011, https://doi.org/10.3858/emm.2011.43.3.019