• Title/Summary/Keyword: gene gun

Search Result 246, Processing Time 0.033 seconds

Development and Validation of Quick and Accurate Cephalopods Grouping System in Fishery Products by Real-time Quantitative PCR Based on Mitochondrial DNA (두족류의 진위 판별을 위한 Real-time Quantitative PCR 검사법 개발 및 검증)

  • Chung, In Young;Seo, Yong Bae;Yang, Ji Young;Kwon, Ki sung;Kim, Gun Do
    • Journal of Food Hygiene and Safety
    • /
    • v.33 no.4
    • /
    • pp.280-288
    • /
    • 2018
  • In this study, an approach for the analysis of the five cephalopod species (octopus, long-arm octopus, squid, wet-foot octopus, beka squid) consumed in the Republic of Korea is developed. The samples were collected from the Southeast Asian countries Thailand, Indonesia, Vietnam, and China. The SYBR-green-based real-time qPCR method, based on the mitochondrial DNA genome of the five cephalopods was developed and validated. The intergroup variations in the mitochondrial DNA are evident in the bioinformatic analysis of the mitochondrial genomic DNA sequences of the five groups. Some of the highly-conserved and slightly-variated regions are identified in the mitochondrial cytochrome-c-oxidase subunit I (COI) gene, 16s ribosomal RNA (16s rRNA) gene, and 12s ribosomal RNA (12s rRNA) gene of these groups. To specify each five cephalopod groups, specific primer sets were designed from the COI, 16s rRNA and 12s rRNA regions. The specific primer sets amplified the DNA using the SYBR-green-based real-time PCR system and 11 commercially secured animal tissues: Octopus vulgaris, Octopus minor, Todarodes pacificus, Dosidicus gigas, Sepia esculenta, Amphioctopus fangsiao, Amphioctopus aegina, Amphioctopus marginatus, Loliolus beka, Loligo edulis, and Loligo chinensis. The results confirmed by a conveient way to calculate relative amplification levels between different samples in that it directly uses the threshold cycles (Ct)-value range generated by the qPCR system from these samples. This genomic DNA-based molecular technique provides a quick, accurate, and reliable method for the taxonomic classification of the animal tissues using the real-time qPCR.

Analysis of germinating seed stage expressed sequence tags in Oryza sativa L. (벼 발아종자 발현유전자의 발현특성분석)

  • Yoon, Ung-Han;Lee, Gang-Seob;Kim, Chang-Kug;Lee, Jung-Sook;Hahn, Jang-Ho;Yun, Doh-Won;Ji, Hyeon-So;Lee, Tae-Ho;Lee, Jeong-Hwa;Park, Sung-Han;Kim, Gun-Wook;Seo, Mi-Suk;Kim, Yong-Hwan
    • Journal of Plant Biotechnology
    • /
    • v.36 no.3
    • /
    • pp.281-288
    • /
    • 2009
  • Seed germination is the important stage to express many genes for regulation of energy metabolism, starch degradation and cell division from seed dormancy state. For the functional analysis of seed germination mechanisms, we were analyzed the rice cDNA clones (Oryzasativa cultivar Ilpum) obtained from seed imbibition during 48 hours. Total number of 18,101 Expressed Sequence Tags (ESTs) were clustered using SeqMan program. Among them, 8,836 clones were identified as unique clones. We identified the chitinase gene specifically expressed in seed germination and amylase gene involved to starch degradation from the full length cDNA analysis, and several genes were registered to NCBI GeneBank. To analyzed the commonly expressed genes between inmature seed and germinated seed, 25,66 inmature ESTs and 18,101 germinated ESTs were clustered using SeqMan program and identified 2,514 clones as commonly expressed unigene. Among them, alpha-glubulin and alcohol dehydrogenase I were supposed to LEA genes only expressed in the immature and germinated seed stages. For the clustering of orthologous group genes, we further analyzed the 8,836 EST clones from germinating seeds using NCBI clusters of orthologous groups database. Among the clones, 5,076 clones were categorized into information storage and processing, cellular processes and signaling, metabolism and poorly characterized genes, proportioning 783 (14.29%), 1,484 (27%), 1,363 (24.8%) and 1,869 (34%) clones to the previous four categories, respectively.

Functional Expression of Proteomics-guided AfsR2-dependent Genes in Avermectin-producing Streptomyces avermitilis (Avermectin을 생산하는 Streptomyces avermitilis에서의 Proteomics-guided AfsR2-dependent 유전자의 발현)

  • Kim Myung-Gun;Park Hyun-Joo;Im Jong-Hyuk;Kim Eung-Soo
    • Microbiology and Biotechnology Letters
    • /
    • v.34 no.3
    • /
    • pp.211-215
    • /
    • 2006
  • AfsR2 is a global regulatory protein involved in the stimulation of secondary metabolite biosynthesis in various Streptomyces species including avermectin-producing S. avermitilis. Among several AfsR2-dependent genes identified from the comparative proteomics, the polyribonucleotide nucleotidyltransferase (PNP) and the glyceraldehyde-3-phosphate dehydrogenase (GPD) genes were previously proposed to regulate the actinorhodin production in S. lividans upon afsR2 over-expression positively and negatively, respectively. To show the biological significance of the PNP and GPD genes in the S. avermitilis strains, these two genes were functionally expressed in both the wild-type and the avermectin-overproducing mutant strains. The PNP gene expression stimulated secondary metabolite production in the wild-type S. avermitilis ATCC31267, but not in the avermectin-overproducing S. avermitilis ATCC31780. Interestingly, the GDP gene expression stimulated secondary metabolite production by 4-fold in the wild-type S. avermitilis ATCC31267 and by 2.5-fold in the avermectin-overproducing S. avermitilis ATCC31780, respectively. These results suggest that the biological significance of the afsR2-dependent PNP and GPD gene expressions on antibiotic biosynthetic regulation could be significantly different depending on Streptomyces species.

Enhanced Production of Astaxanthin by Archaea Chaperonin in Escherichia coli (대장균에서 고세균 샤페론을 이용한 아스타잔틴 생산능 향상을 위한 연구)

  • Seo, Yong Bae;Lee, Jong Kyu;Jeong, Tae Hyug;Nam, Soo-Wan;Kim, Gun-Do
    • Journal of Life Science
    • /
    • v.25 no.12
    • /
    • pp.1339-1346
    • /
    • 2015
  • The aim of this study is to increase production of carotenoids in recombinant Escherichia coli by Archaea chaperonin. The carotenoids are a widely distributed class of structurally and functionally diverse yellow, orange, and red natural pigments. These pigments are synthesized in bacteria, algae, fungi, and plants, and have been widely used as a feed supplement from poultry rearing to aquaculture. Carotenoids also exhibit diverse biological properties, such as strong antioxidant and antitumor activities, and enhancement of immune responses. In the microbial world, carotenoids are present in both anoxygenic and oxygenic photosynthetic bacteria and algae and in many fungi. We have previously reported cloning and functional analysis of the carotenoid biosynthesis genes from Paracoccus haeundaensis. The carotenogenic gene cluster involved in astaxanthin production contained seven carotenogenic genes (crtE, crtB, crtI, crtY, crtZ, crtW and crtX genes) and recombinant Escherichia coli harboring seven carotenogenic genes from Paracoccus haeundaensis produced 400 μg/g dry cell weight (DCW) of astaxanthin. In order to increase production of astaxanthin, we have co-expressed chaperone genes (ApCpnA and ApCpnB) in recombinant Escherichia coli harboring the astaxanthin biosynthesis genes. This engineered Escherichia coli strain containing both chaperone gene and astaxanthin biosynthesis gene cluster produced 890 μg/g DCW of astaxanthin, resulting 2-fold increased production of astaxanthin.

Cloning of Geranylgeranyl Pyrophosphate Synthase (CrtE) Gene from Kocuria gwangalliensis and Its Functional Co-expression in Escherichia coli (코쿠리아 광안리엔시스의 제라닐제라닐 피로인산염 합성 효소의 클로닝과 대장균에서 공발현을 통한 효소 활성에 관한 연구)

  • Seo, Yong-Bae;Kim, Gun-Do;Lee, Jae-Hyung
    • Journal of Life Science
    • /
    • v.22 no.8
    • /
    • pp.1024-1033
    • /
    • 2012
  • A gene encoding a novel geranylgeranyl pyrophosphate (GGPP) synthase from Kocuria gwangalliensis has been cloned and expressed in Escherichia coli. The deduced amino acid sequence showed 59.6% identity with a putative GGPP synthase (CrtE) from K. rhizophila. An expression plasmid containing the crtE gene was constructed, and E. coli cells containing this plasmid produced a recombinant protein with a theoretical molecular mass of 41 kDa, corresponding to the molecular weight of GGPP synthase. Due to the lack of crtE, crtB, and crtI in E. coli, the biosynthesis of lycopene was only obtained when the plasmid pCcrtE was co-transformed into E. coli expressing the pRScrtBI-carrying carotenoid biosynthesis crtB and crtI genes, which were sub-cloned from Paracoccus haeundaensis. The biochemical studies on the expressed proteins were performed via HPLC. The results obtained from this study will provide a wider base of knowledge regarding the primary structure of CrtE cloned from K. gwangalliensis at the molecular level.

Microarray Analysis of Gene Expression Affected by Water-extracts of Pinelliae rhizoma in a Hypoxic Model of Cultured Rat Cortical Cells (배양대뇌신경세포 저산소증모델에서 반하여 의한 유전자표현의 변화)

  • Kwon, Gun-Rok;Jung, Hyun-Jung;Shin, Gil-Jo;Moon, Il-Soo;Lee, Won-Chul;Jung, Seung-Hyun
    • Journal of Life Science
    • /
    • v.19 no.7
    • /
    • pp.905-916
    • /
    • 2009
  • Pinelliae rhizoma (Pr, 半夏) is a traditional medicine used in the treatment of incipient stroke. We investigated the effects of Pr on gene expression in a hypoxic model using cultured rat cortical cells. Pr (2.5 $\mu$g/ml) was added to the culture medium on DIV 12. A hypoxic shock (2% 0$_2$/5% CO$_2$, 37$^{\circ}$C, 3 hr) was given two days later (on DIV 14), and total mRNAs were isolated at 24 hr post-shock from both Pr-treated samples and untreated control cultures. Microarray using TwinChip $^{TM}$ Rat-5K (Digital Genomics, Seoul) indicated that Pr upregulated genes for cell growth and differentiation (tubb5, tgfa, ptpn11, n-ras, pdgfa) and antiapoptosis (mcl-1), while downregulating the apoptosis-induced gene (tieg). Therefore, it is interpreted that Pr protects neurons from hypxoic shock by maintaining cell growth and differentiation and by preventing apoptosis.

Effects of Hypoxia on the Fertilization and Early Development of Sea Urchin, Strongylocentrotus nudus (둥근성게 (Strongylocentrotus nudus)의 수정과 초기 배발생에 미치는 빈산소의 영향)

  • Lee, Gun-Sup;Hwang, Jin-Ik;Chung, Young-Jae;Kim, Dong-Giun;Moh, Sang-Hyun;Chang, Man;Lee, Taek-Kyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.8
    • /
    • pp.3785-3791
    • /
    • 2012
  • Dissolved oxygen is one of the most important factors controlling growth in aquatic organisms. Hypoxia is generally defined as dissolved oxygen less than 2.8 mg $O_2/L$ (equivalent to 2 mL $O_2/L$ or 91.4 mM). Therefore, hypoxia zone can cause a serious problem in marine ecosystem. In this study, to investigate embryotoxic (fertilization and embryo development rates) effects of hypoxia on sea urchin Strongylocentrotus nudus were exposed to dissolved oxygen levels of 7.6 mg $O_2/L$ (normoxia) and 1.8 mg $O_2/L$ (hypoxia) for 2 days at $15^{\circ}C$ and 33 ‰. Also, Expression levels of stress related gene (HSP70) and antioxidant related gene (glutathione reductase) in the sea urchins exposed to hypoxia were confirmed by Immunoblotting and RT-PCR analysis. In results, we showed that developmental rates were dramatically reduced in hypoxia condition. Molecular analysis demonstrated that higher HSP70 (5.5 fold) and glutathione reductase gene (2.79 fold) were present in the sea urchin exposed to hypoxia. Our results suggested that hypoxia can cause the abnormal development and elicits a stress and antioxidant response on sea urchin.

The effect of heat stress on frame switch splicing of X-box binding protein 1 gene in horse

  • Lee, Hyo Gun;Khummuang, Saichit;Youn, Hyun-Hee;Park, Jeong-Woong;Choi, Jae-Young;Shin, Teak-Soon;Cho, Seong-Keun;Kim, Byeong-Woo;Seo, Jakyeom;Kim, Myunghoo;Park, Tae Sub;Cho, Byung-Wook
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.8
    • /
    • pp.1095-1103
    • /
    • 2019
  • Objective: Among stress responses, the unfolded protein response (UPR) is a well-known mechanism related to endoplasmic reticulum (ER) stress. ER stress is induced by a variety of external and environmental factors such as starvation, ischemia, hypoxia, oxidative stress, and heat stress. Inositol requiring enzyme $1{\alpha}$ ($IRE1{\alpha}$)-X-box protein 1 (XBP1) is the most conserved pathway involved in the UPR and is the main component that mediates $IRE1{\alpha}$ signalling to downstream ER-associated degradation (ERAD)- or UPR-related genes. XBP1 is a transcription factor synthesised via a novel mechanism called 'frame switch splicing', and this process has not yet been studied in the horse XBP1 gene. Therefore, the aim of this study was to confirm the frame switch splicing of horse XBP1 and characterise its dynamics using Thoroughbred muscle cells exposed to heat stress. Methods: Primary horse muscle cells were used to investigate heat stress-induced frame switch splicing of horse XBP1. Frame switch splicing was confirmed by sequencing analysis. XBP1 amino acid sequences and promoter sequences of various species were aligned to confirm the sequence homology and to find conserved cis-acting elements, respectively. The expression of the potential XBP1 downstream genes were analysed by quantitative real-time polymerase chain reaction. Results: We confirmed that splicing of horse XBP1 mRNA was affected by the duration of thermal stress. Twenty-six nucleotides in the mRNA of XBP1 were deleted after heat stress. The protein sequence and the cis-regulatory elements on the promoter of horse XBP1 are highly conserved among the mammals. Induction of putative downstream genes of horse XBP1 was dependent on the duration of heat stress. We confirmed that both the mechanisms of XBP1 frame switch splicing and various binding elements found in downstream gene promoters are highly evolutionarily conserved. Conclusion: The frame switch splicing of horse XBP1 and its dynamics were highly conserved among species. These results facilitate studies of ER-stress in horse.

Food Fraud Monitoring of Raw Materials for Commercial Seafood Products Using DNA Barcode Information (DNA Barcode를 이용한 수산가공품 원재료 진위판별)

  • Park, Eun-Ji;Kang, Ju-Yeong;Lee, Han-Cheol;Park, Min-Ji;Yang, Ji-Young;Shin, Ji-Young;Kim, Gun-Do;Kim, Jong-Oh;Seo, Yong-Bae;Kim, Jung-Beom
    • Journal of Food Hygiene and Safety
    • /
    • v.36 no.4
    • /
    • pp.331-341
    • /
    • 2021
  • DNA barcode sequences of commercial seafood products, which are difficult to morphologically discriminate, were analyzed to determine cases of food fraud. The gene sequences were analyzed by amplifying the COX I (cytochrome C oxidase subunit I) gene region of mitochondrial DNA, which is mainly used for species identification. The DNA barcode sequences were compared with the gene sequence of each fish registered in the US National Center for Biotechnology. A total of 46 processed seafood products (12 Pagrus majo, 4 Oplegnathus fasciatus, 7 Dentex tumifrons, 2 Acanthopagrus schlegelii, 7 Oreochromis niloticus, 6 Branchiostegus japonicus, 8 Branchiostegus albus) were investigated. Having DNA sequence identity of more than 97% was judged as the same species. As a result of this study, no cases of forgery and alteration were detected. However, some disparities in the commercial names used in local markets and the standard names given in the Korea Food Code were found, which may cause confusion for consumers. It is therefore suggested that the standard name or scientific name be displayed on seafood product labels.

Characterization of Cellulase and Xylanase from Bacillus subtilis NC1 Isolated from Environmental Soil and Determination of Its Genes (Bacillus subtilis NC1 유래 cellulase와 xylanase의 특성 규명 및 효소 유전자의 규명)

  • Park, Chang-Su;Kang, Dae-Ook;Choi, Nack-Shick
    • Journal of Life Science
    • /
    • v.22 no.7
    • /
    • pp.912-919
    • /
    • 2012
  • A Bacillus sp. strain producing celluase and xylanase was isolated from environmental soil with LB agar plate containing carboxymethylcellulose (CM-cellulose) and beechwood xylan stained with trypan blue as substrates, respectively. Based on the 16S rRNA gene sequence and API 50 CHL test, the strain was identified as B. subtilis and named B. subtilis NC1. The cellulase and xylanase from B. subtilis NC1 exhibited the highest activities for CM-cellulose and beechwood xylan as substrate, respectively, and both enzymes showed the maximum activity at pH 5.0 and $50^{\circ}C$. We cloned and sequenced the genes for cellulase and xylanase from genomic DNA of the B. subtilis NC1 by the shot-gun cloning method. The cloned cellulase and xylanase genes consisted of a 1,500 bp open reading frame (ORF) encoding a 499 amino acid protein with a calculated molecular mass of 55,251 Da and a 1,269 bp ORF encoding a 422 amino acid protein with a calculated molecular mass of 47,423 Da, respectively. The deduced amino acid sequences from the genes of cellulase and xylanase showed high identity with glycosyl hydrolases family (GH) 5 and 30, respectively.