DOI QR코드

DOI QR Code

Analysis of germinating seed stage expressed sequence tags in Oryza sativa L.

벼 발아종자 발현유전자의 발현특성분석

  • Yoon, Ung-Han (Genomics Division, National Academy of Agricultural Science, RDA) ;
  • Lee, Gang-Seob (Genomics Division, National Academy of Agricultural Science, RDA) ;
  • Kim, Chang-Kug (Genomics Division, National Academy of Agricultural Science, RDA) ;
  • Lee, Jung-Sook (Genomics Division, National Academy of Agricultural Science, RDA) ;
  • Hahn, Jang-Ho (Genomics Division, National Academy of Agricultural Science, RDA) ;
  • Yun, Doh-Won (Genomics Division, National Academy of Agricultural Science, RDA) ;
  • Ji, Hyeon-So (Genomics Division, National Academy of Agricultural Science, RDA) ;
  • Lee, Tae-Ho (Bioscience and Bioinformatics Division, MyongJi University) ;
  • Lee, Jeong-Hwa (Genomics Division, National Academy of Agricultural Science, RDA) ;
  • Park, Sung-Han (Genomics Division, National Academy of Agricultural Science, RDA) ;
  • Kim, Gun-Wook (Genomics Division, National Academy of Agricultural Science, RDA) ;
  • Seo, Mi-Suk (Genomics Division, National Academy of Agricultural Science, RDA) ;
  • Kim, Yong-Hwan (Genomics Division, National Academy of Agricultural Science, RDA)
  • Published : 2009.09.30

Abstract

Seed germination is the important stage to express many genes for regulation of energy metabolism, starch degradation and cell division from seed dormancy state. For the functional analysis of seed germination mechanisms, we were analyzed the rice cDNA clones (Oryzasativa cultivar Ilpum) obtained from seed imbibition during 48 hours. Total number of 18,101 Expressed Sequence Tags (ESTs) were clustered using SeqMan program. Among them, 8,836 clones were identified as unique clones. We identified the chitinase gene specifically expressed in seed germination and amylase gene involved to starch degradation from the full length cDNA analysis, and several genes were registered to NCBI GeneBank. To analyzed the commonly expressed genes between inmature seed and germinated seed, 25,66 inmature ESTs and 18,101 germinated ESTs were clustered using SeqMan program and identified 2,514 clones as commonly expressed unigene. Among them, alpha-glubulin and alcohol dehydrogenase I were supposed to LEA genes only expressed in the immature and germinated seed stages. For the clustering of orthologous group genes, we further analyzed the 8,836 EST clones from germinating seeds using NCBI clusters of orthologous groups database. Among the clones, 5,076 clones were categorized into information storage and processing, cellular processes and signaling, metabolism and poorly characterized genes, proportioning 783 (14.29%), 1,484 (27%), 1,363 (24.8%) and 1,869 (34%) clones to the previous four categories, respectively.

Keywords

References

  1. Bewley DJ, Black M. (1985) Seeds, Physiology of development and germination, Plenum press, New York, pp135-168
  2. Bove J, Jullien M, Grappin P. (2002) Functional genomics in the study of seed germination. Genome Biol 3:1-5
  3. Carninci P, Kvam C, Kitamura A, Ohsumi T, Okazaki Y, Itoh M, Kamiya M, Shibata K, Sasaki N, Izawa M, Muramatsu M, Hayashizaki Y, Schneider C. (1996) High-efficiency full-length cDNA cloning by biotinylated CAP trapper. Genomics 37:327-36 https://doi.org/10.1006/geno.1996.0567
  4. Galau GA, Hughes DW. (1987) Coordinate accumulation of homeologous transcripts of seven cotton Lea genefamilies during embryogenesis and germination. Dev Biol 123:213-21 https://doi.org/10.1016/0012-1606(87)90443-X
  5. Huang J, Takano T, Akita S. (2000) Expression of alpha-expansin genes in young seedlings of rice (Oryza sativa L.). Planta 211:467-473 https://doi.org/10.1007/s004250000311
  6. International Rice Genome Sequencing Project. (2005) The mapbased sequence of the rice genome. Nature 436:793-800 https://doi.org/10.1038/nature03895
  7. Ishibashi N, Yamauchi D, Minamikawa T. (1990) Stored mRNA in cotyledons of Vigna unguiculata seeds: nucleotide sequence of cloned cDNA for a stored mRNA and induction of its synthesis by precocious germination. Plant Mol Biol 15:59-64 https://doi.org/10.1007/BF00017724
  8. Jung KH, An G, Ronald PC. (2008) Towards a better bowl of rice: assigning function to tens of thousands of rice genes. Nat Rev Genet 9:91-101 https://doi.org/10.1038/nrg2286
  9. Kikuchi S, Satoh K, Nagata T, Kawagashira N, Doi K, Kishimoto N, Yazaki J, Ishikawa M, Yamada H, Ooka H, Hotta I, Kojima K, Namiki T, Ohneda E, Yahagi W, Suzuki K, Li CJ, Ohtsuki K, Shishiki T; Foundation of Advancement of International Science Genome Sequencing & Analysis Group, Otomo Y, Murakami K, Iida Y, Sugano S, Fujimura T, Suzuki Y, Tsunoda Y, Kurosaki T, Kodama T, Masuda H, Kobayashi M, Xie Q, Lu M, Narikawa R, Sugiyama A, Mizuno K, Yokomizo S, Niikura J, Ikeda R, Ishibiki J, Kawamata M, Yoshimura A, Miura J, Kusumegi T, Oka M, Ryu R, Ueda M, Matsubara K;RIKEN, Kawai J, Carninci P, Adachi J, Aizawa K, Arakawa T, Fukuda S, Hara A, Hashizume W, Hayatsu N, Imotani K, Ishii Y, Itoh M, Kagawa I, Kondo S, Konno H, Miyazaki A, Osato N, Ota Y, Saito R, Sasaki D, Sato K, Shibata K, Shinagawa A, Shiraki T, Yoshino M, Hayashizaki Y, Yasunishi A. (2003) Collection, mapping, and annotation of over 28,000 cDNA clones from japonica rice. Science 301:376-9脈돀偄඗⨀⁊렼඗⨀夈돐࡞඗⨀怽䈈骈끏඗⨀㨯䬄촒ሀ硣඗⨀ሀ老 https://doi.org/10.1126/science.1081288
  10. Kim CK, Kikuchi S, Satoh K, Kim JA, Kim DH, Kim YH, Park SH, Lee JH, Yoon UH. (2009) Genetic analysis os seed-specific gene expression for pigmentation in colored rice. Biochip Journal 3:125-129
  11. Lu T, Huang X, Zhu C, Huang T, Zhao Q, Xie K, Xiong L, Zhang Q, Han B. (2008) RICD: a rice indica cDNA database resource for rice functional genomics. BMC Plant Biol 8:118 https://doi.org/10.1186/1471-2229-8-118
  12. Magneschi L, Perata P. (2009) Rice germination and seedling growth in the absence of oxygen. Annals of Botany 103:181-196 https://doi.org/10.1093/aob/mcn121
  13. Nakamura H, Hakata M, Amano K, Miyao A, Toki N, Kajikawa M, Pang J, Higashi N, Ando S, Toki S, Fujita M, Enju A, Seki M, Nakazawa M, Ichikawa T, Shinozaki K, Matsui M, Nagamura Y, Hirochika H, Ichikawa H. (2007) A genome-wide gain-of function analysis of rice genes using the FOX-hunting system. Plant Mol Biol 65:357-71 https://doi.org/10.1007/s11103-007-9243-y
  14. Ouyang S, Zhu W, Hamilton J, Lin H, Campbell M, Childs K, Thibaud-Nissen F, Malek RL, Lee Y, Zheng L, Orvis J, Haas B, Wortman J, Buell CR. (2007) The TIGR Rice Genome Annotation Resource: improvements and new features. Nucleic Acids Res. 35(Database issue):D883-7 https://doi.org/10.1093/nar/gkl976
  15. Park DS, Park SK, Han AI, Wang HJ, Jun NS, Manigbas NL, Woo YM, Ahn BO, Yun DW, Yoon UH, Kim YW, Lee MC, Kim DH, Nam MH, Han CD, Kang HW, Yi G. (2009) Genetic variation through Dissociation(Ds) insertional mutagenesis system for rice in Korea : progress and current ststus. Molecular Breeding 24:1-15 https://doi.org/10.1007/s11032-009-9300-0
  16. Rice Annotation Project. (2008) The Rice Annotation Project Database (RAP-DB). Nucleic Acids Res. 36(Database issue):D1028-33 https://doi.org/10.1093/nar/gkm978
  17. Smith AM, Zeeman SC, Smith SM. (2005) Starch degradation. Annu Rev Plant Biol 56:73-98 https://doi.org/10.1146/annurev.arplant.56.032604.144257
  18. Song XJ, Huang W, Shi M, Zhu MZ, Lin HX. (2007) A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nat Genet 39:623-30 https://doi.org/10.1038/ng2014
  19. Tatusov RL, Fedorova ND, Jackson JD, Jacobs AR, Kiryutin B, Koonin EV, Krylov DM, Mazumder R, Mekhedov SL, Nikolskaya AN, Rao BS, Smirnov S, Sverdlov AV, Vasudevan S, Wolf YI, Yin JJ, Natale DA. (2003). The COG database: an updated version includes eukaryotes. BMC Bioinformatics 4:41 https://doi.org/10.1186/1471-2105-4-41
  20. Tatusov RL, Koonin EV, Lipman DJ. (1997) A genomic perspective on protein families. Science 278:631-637 https://doi.org/10.1126/science.278.5338.631
  21. Umezawa T, Sakurai T, Totoki Y, Toyoda A, Seki M, Ishiwata A, Akiyama K, Kurotani A, Yoshida T, Mochida K, Kasuga M, Todaka D, Maruyama K, Nakashima K, Enju A, Mizukado S, Ahmed S, Yoshiwara K, Harada K, Tsubokura Y, Hayashi M, Sato S, Anai T, Ishimoto M, Funatsuki H, Teraishi M, Osaki M, Shinano T, Akashi R, Sakaki Y, Yamaguchi-Shinozaki K, Shinozaki K. (2008) Sequencing and analysis of approximately 40,000 soybean cDNA clones from a full-lengthenriched cDNA library. DNA Res 15:333-46 https://doi.org/10.1093/dnares/dsn024
  22. Xiao B, Huang Y, Tang N, Xiong L. (2007) Over-expression of a LEA gene in rice improves drought resistance under the field conditions. Theor Appl Genet 115:35-46 https://doi.org/10.1007/s00122-007-0538-9
  23. Xiao LS, Frank T, Shu QY, Engel KH. (2008) Metabolite profiling of germinating rice seeds. J. Agric. Food Chem 56:11612-11620 https://doi.org/10.1021/jf802671p
  24. Yang P, Li X, Wang X, Chen H, Chen F, Shen S. (2007) Proteomic analysis of rice (Oryza sativa) seeds during germination. Proteomics 7:3358-68 https://doi.org/10.1002/pmic.200700207
  25. Yoon UH, Lee GS, Lee JS, Hahn JH, Kim CK, Kikuchi S, Satoh K, Kim JA, Lee JH, Lee TH, Kim YH. (2009) Structural Analysis of Seed Developmental Stage ESTs in Oryza sativa L. Korean J of Plant Biotechnology 36:130-136 https://doi.org/10.5010/JPB.2009.36.2.130
  26. Yu SM. (1998) Molecular biology of rice, “Regulation of alphaamylase gene expression”, Springer-Verlag press, pp 161-178

Cited by

  1. Structural and expression analysis of prolamin genes in Oryza sativa L. vol.6, pp.3, 2012, https://doi.org/10.1007/s11816-012-0220-9
  2. Structural and expression analysis of glutelin genes in Oryza sativa L. vol.38, pp.2, 2011, https://doi.org/10.5010/JPB.2011.38.2.176