DOI QR코드

DOI QR Code

Development and Validation of Quick and Accurate Cephalopods Grouping System in Fishery Products by Real-time Quantitative PCR Based on Mitochondrial DNA

두족류의 진위 판별을 위한 Real-time Quantitative PCR 검사법 개발 및 검증

  • Chung, In Young (Department of Microbiology, Pukyong National University) ;
  • Seo, Yong Bae (Institute of Fisheries Science, College of Fisheries Science, Pukyong National University) ;
  • Yang, Ji Young (Department of Food Science & Technology, Pukyong National University) ;
  • Kwon, Ki sung (New Hazardous Substance Team, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety) ;
  • Kim, Gun Do (Department of Microbiology, Pukyong National University)
  • 정인영 (부경대학교 미생물학과) ;
  • 서용배 (부경대학교 해양생명과학연구소) ;
  • 양지영 (부경대학교 식품공학과) ;
  • 권기성 (식품의약품안전처 신종유해물질팀) ;
  • 김군도 (부경대학교 미생물학과)
  • Received : 2018.05.10
  • Accepted : 2018.06.12
  • Published : 2018.08.30

Abstract

In this study, an approach for the analysis of the five cephalopod species (octopus, long-arm octopus, squid, wet-foot octopus, beka squid) consumed in the Republic of Korea is developed. The samples were collected from the Southeast Asian countries Thailand, Indonesia, Vietnam, and China. The SYBR-green-based real-time qPCR method, based on the mitochondrial DNA genome of the five cephalopods was developed and validated. The intergroup variations in the mitochondrial DNA are evident in the bioinformatic analysis of the mitochondrial genomic DNA sequences of the five groups. Some of the highly-conserved and slightly-variated regions are identified in the mitochondrial cytochrome-c-oxidase subunit I (COI) gene, 16s ribosomal RNA (16s rRNA) gene, and 12s ribosomal RNA (12s rRNA) gene of these groups. To specify each five cephalopod groups, specific primer sets were designed from the COI, 16s rRNA and 12s rRNA regions. The specific primer sets amplified the DNA using the SYBR-green-based real-time PCR system and 11 commercially secured animal tissues: Octopus vulgaris, Octopus minor, Todarodes pacificus, Dosidicus gigas, Sepia esculenta, Amphioctopus fangsiao, Amphioctopus aegina, Amphioctopus marginatus, Loliolus beka, Loligo edulis, and Loligo chinensis. The results confirmed by a conveient way to calculate relative amplification levels between different samples in that it directly uses the threshold cycles (Ct)-value range generated by the qPCR system from these samples. This genomic DNA-based molecular technique provides a quick, accurate, and reliable method for the taxonomic classification of the animal tissues using the real-time qPCR.

본 연구는 국내에서 생산되거나 해외에서 수입되어 국내에서 유통되는 수산물 중에서 두족류를 문어류, 낙지류, 오징어류, 주꾸미류, 꼴뚜기류의 5개 그룹으로 구분하여 분석하였다. 두족류 5개 그룹을 판별을 하기 위해 미토콘드리아에 존재하는 유전자를 분석하였고, 그 중에서 COI (mitochondrial cytochrome C oxidase subunit I), 16s rRNA (16s ribosomal RNA), 12s rRNA (12s ribosomal RNA) 내에서 상당히 유사한 DNA 서열 부분과 일부 서열 변화 부분이 확인되었다. 명확하게 두족류 5개 그룹 판별을 하기 위해 COI, 16s rRNA, 12s rRNA 유전자의 일부 서열 변화 부분에서 그룹 특이적 프라이머 세트를 디자인하였다. 국내 외에서 확보한 두족류 시료(참문어, 낙지, 살오징어, 아메리카 대왕오징어, 갑오징어, 주꾸미, 모래주꾸미, 하이야주꾸미, 참꼴뚜기, 창꼴뚜기, 한치꼴뚜기)의 genomic DNA을 추출하여 각 그룹의 특이적 프라이머를 이용하여 SYBR 기반의 real-time PCR 시스템에 의해 분석되었고, threshold cycle (Ct) value와 같은 real-time PCR 결과 분석에 의해 두족류 내 그룹 판별이 가능하였다(Table 3).

Keywords

References

  1. 해양수산부.한국해양수산개발원: 2017년 3분기 수입 수산물 동향 . pp.4-64 (2017).
  2. Bataille M., Crainic K, Leterreux M, Durigon M & De Mazancourt P: Multiplex amplification of mitochondrial DNA for human and species identification in forensic evaluation. Forensic Sci. Int., 99, 165-170 (1999). https://doi.org/10.1016/S0379-0738(98)00185-6
  3. Civera T: Species identification and safety of fish products. Vet. Res. Commun., 27, 481-489 (2003). https://doi.org/10.1023/B:VERC.0000014205.87859.ab
  4. Mackie I, et al.: Species identification of smoked and gravad fish products by sodium dodecylsulphate polyacrylamide gel electrophoresis, urea isoelectric focusing and native isoelectric focusing: A collaborative study. Food Chem. 71, 1-7 (2000). https://doi.org/10.1016/S0308-8146(00)00147-3
  5. Moretti VM, Turchini GM, Bellagamba F, Caprino F: Traceability issues in fishery and aquaculture products. Vet. Res. Commun. 27, 497-505 (2003). https://doi.org/10.1023/B:VERC.0000014207.01900.5c
  6. Teletchea F: Molecular identification methods of fish species: Reassessment and possible applications. Rev. Fish Biol. Fish. 19, 265-293 (2009). https://doi.org/10.1007/s11160-009-9107-4
  7. Birstein VJ, Desalle R: Molecular phylogeny of acipenserinae. Mol. Phylogenet. Evol. 9, 141-155 (1998). https://doi.org/10.1006/mpev.1997.0443
  8. Brown JR, Beckenbach K, Beckenbach AT, Smith MJ: Length variation, heteroplasmy and sequence divergence in the mitochondrial DNA of four species of sturgeon (Acipenser). Genetics, 142, 525-535 (1996).
  9. Chow S, Clarke ME, Walsh PJ: PCR-RFLP analysis on thirteen western Atlantic snappers (subfamily Lutjaninae): A simple method for species and stock identification. Fish. Bull. 91, 619-627 (1993).
  10. Wolf C, Rentsch J, Hübner P: PCR-RFLP analysis of mitochondrial DNA: a reliable method for species identification. J. Agric. Food Chem. 47, 1350-1355 (1999). https://doi.org/10.1021/jf9808426
  11. Wolf C, Burgener M, Hubner P, Luthy J: PCR-RFLP analysis of mitochondrial DNA: Differentiation of fish species. LWT - Food Sci. Technol. 33, 144-150 (2000). https://doi.org/10.1006/fstl.2000.0630
  12. Hubalkova Z, Kralik P, Tremlova B, Rencova E: Methods of gadoid fish species identification in food and their economic impact in the Czech Republic: A review. Veterinarni Medicina, 52, 273-292 (2007).
  13. Liu ZJ, Cordes JF: DNA marker technologies and their applications in aquaculture genetics. Aquaculture, 238, 1-37 (2004). https://doi.org/10.1016/j.aquaculture.2004.05.027
  14. Sezaki K, Itoi S, Watabe S: A simple method to distinguish two commercially valuable eel species in Japan Anguilla japonica and A. anguilla using polymerase chain reaction strategy with a species-specific primer. Fish. Sci. 71, 414- 421 (2005). https://doi.org/10.1111/j.1444-2906.2005.00979.x
  15. Tisza A, et al.: Identification of poultry species using polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP) and capillary electrophoresis-single strand conformation polymorphism (CE-SSCP) methods. Food Control, 59, 430-438 (2016). https://doi.org/10.1016/j.foodcont.2015.06.006
  16. TANABE S, et al.: PCR Method of detecting pork in foods for verifying allergen labeling and for identifying hidden pork ingredients in processed foods. Biosci. Biotechnol. Biochem. 71, 1663-1667 (2007). https://doi.org/10.1271/bbb.70075
  17. Watanabe S, Minegishi Y, Yoshinaga T, Aoyama J, Tsukamoto K: A quick method for species identification of Japanese eel (Anguilla japonica) using real-time PCR: An onboard application for use during sampling surveys. Mar. Biotechnol. 6, 566-574 (2004). https://doi.org/10.1007/s10126-004-1000-5
  18. Kim M, Yoo I, Lee SY, Hong Y, Kim HY: Quantitative detection of pork in commercial meat products by TaqMan$^{(R)}$ realtime PCR assay targeting the mitochondrial D-loop region. Food Chem. 210, 102-106 (2016). https://doi.org/10.1016/j.foodchem.2016.04.084
  19. Amaral JS, Santos G, Oliveira MBPP, Mafra I: Quantitative detection of pork meat by EvaGreen real-time PCR to assess the authenticity of processed meat products. Food Control, 72, 53-61 (2017). https://doi.org/10.1016/j.foodcont.2016.07.029
  20. Kim S, Eo HS, Koo H, Choi JK, Kim W: DNA barcodebased molecular identification system for fish species. Mol. Cells, 30, 507-512 (2010). https://doi.org/10.1007/s10059-010-0148-2
  21. Hou B, et al.: Development of a sensitive and specific multiplex PCR method for the simultaneous detection of chicken, duck and goose DNA in meat products. Meat Sci. 101, 90-94 (2015). https://doi.org/10.1016/j.meatsci.2014.11.007
  22. Yang, L. et al. Species identification through mitochondrial rRNA genetic analysis. Sci. Rep. 4, (2014).
  23. Ishibashi Y, Saitoh T: Phylogenetic relationships among fragmented Asian black bear (Ursus thibetanus) populations in western Japan. Conserv. Genet. 5, 311-323 (2004). https://doi.org/10.1023/B:COGE.0000031147.14662.82
  24. DeSalle R, Williams AK, George M: Isolation and characterization of animal mitochondrial DNA. Methods in Enzymology, 224, 176-203 (1993).
  25. Jenuth JP, Peterson AC, Fu K, Shoubridge EA: Random genetic drift in the female germline explains the rapid segregation of mammalian mitochondrial DNA. Nat. Genet. 14, 146-151 (1996). https://doi.org/10.1038/ng1096-146
  26. Rocha-Olivares A, Chavez-Gonzalez JP: Molecular identification of dolphinfish species (genus Coryphaena) using multiplex haplotype-specific PCR of mitochondrial DNA. Ichthyol. Res. 55, 389-393 (2008). https://doi.org/10.1007/s10228-008-0040-7
  27. Matsui S, Nakayama K, Kai Y, Yamashita Y: Genetic divergence among three morphs of Acentrogobius pflaumii (Gobiidae) around Japan and their identification using multiplex haplotype-specific PCR of mitochondrial DNA. Ichthyol. Res. 59, 216-222 (2012). https://doi.org/10.1007/s10228-012-0276-0
  28. 식품의약품안전처 . 식품 중 사용원료 진위 판별 지침서 (V): 유전자분석법 활용 . pp.12-108 (2015).
  29. Kim H.S., Seo Y. B., Choi S.-S., Kim J.-H., Sin J.Y., Yang J.-Y., Kim G.-D. Development and validation of multiplex polymerase chain reaction to determine squid species based on 16s rRNA gene. J. Fd. Hyg. Safety, 30, 43-50 (2015). https://doi.org/10.13103/JFHS.2015.30.1.43