• Title/Summary/Keyword: gene gun

Search Result 246, Processing Time 0.024 seconds

Roles of Carbohydrate-Binding Module (CBM) of an Endo-β-1,4-Glucanase (Cel5L) from Bacillus sp. KD1014 in Thermostability and Small-Substrate Hydrolyzing Activity

  • Lee, Jae Pil;Shin, Eun-Sun;Cho, Min Yeol;Lee, Kyung-Dong;Kim, Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.12
    • /
    • pp.2036-2045
    • /
    • 2018
  • An endo-${\beta}$-1,4-glucanase gene, cel5L, was cloned using the shot-gun method from Bacillus sp.. The gene, which contained a predicted signal peptide, encoded a protein of 496 amino acid residues, and the molecular mass of the mature Cel5L was estimated to be 51.8 kDa. Cel5L contained a catalytic domain of glycoside hydrolase (GH) family 5 and a carbohydrate-binding module family 3 (CBM_3). Chromatography using HiTrap Q and CHT-II resulted in the isolation of two truncated forms corresponding to 50 (Cel5L-p50) and 35 kDa (Cel5L-p35, CBM_3-deleted form). Both enzymes were optimally active at pH 4.5 and $55^{\circ}C$, but had different half-lives of 4.0 and 22.8 min, respectively, at $70^{\circ}C$. The relative activities of Cel5L-p50 and Cel5L-p35 for barley ${\beta}$-glucan were 377.0 and 246.7%, respectively, compared to those for carboxymethyl-cellulose. The affinity and hydrolysis rate of pNPC by Cel5L-p35 were 1.7 and 3.3 times higher, respectively, than those by Cel5L-p50. Additions of each to a commercial enzyme set increased saccharification of pretreated rice straw powder by 17.5 and 21.0%, respectively. These results suggest CBM_3 is significantly contributing to thermostability, and to affinity and substrate specificity for small substrates, and that these two enzymes could be used as additives to enhance enzymatic saccharification.

Effects of exercise on myokine gene expression in horse skeletal muscles

  • Lee, Hyo Gun;Choi, Jae-Young;Park, Jung-Woong;Park, Tae Sub;Song, Ki-Duk;Shin, Donghyun;Cho, Byung-Wook
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.3
    • /
    • pp.350-356
    • /
    • 2019
  • Objective: To examine the regulatory effects of exercise on myokine expression in horse skeletal muscle cells, we compared the expression of several myokine genes (interleukin 6 [IL-6], IL-8, chemokine [C-X-C motif] ligand 2 [CXCL2], and chemokine [C-C motif] ligand 4 [CCL4]) after a single bout of exercise in horses. Furthermore, to establish in vitro systems for the validation of exercise effects, we cultured horse skeletal muscle cells and confirmed the expression of these genes after treatment with hydrogen peroxide. Methods: The mRNA expression of IL-6, IL-8, CXCL2, and CCL4 after exercise in skeletal muscle tissue was confirmed using quantitative-reverse transcriptase polymerase chain reactions (qRT-PCR). We then extracted horse muscle cells from the skeletal muscle tissue of a neonatal Thoroughbred. Myokine expression after hydrogen peroxide treatments was confirmed using qRT-PCR in horse skeletal muscle cells. Results: IL-6, IL-8, CXCL2, and CCL4 expression in Thoroughbred and Jeju horse skeletal muscles significantly increased after exercise. We stably maintained horse skeletal muscle cells in culture and confirmed the expression of the myogenic marker, myoblast determination protein (MyoD). Moreover, myokine expression was validated using hydrogen peroxide ($H_2O_2$)-treated horse skeletal muscle cells. The patterns of myokine expression in muscle cells were found to be similar to those observed in skeletal muscle tissue. Conclusion: We confirmed that several myokines involved in inflammation were induced by exercise in horse skeletal muscle tissue. In addition, we successfully cultured horse skeletal muscle cells and established an in vitro system to validate associated gene expression and function. This study will provide a valuable system for studying the function of exercise-related genes in the future.

Comparative Genomic Analysis of Lactobacillus rhamnosus BFE5264, a Probiotic Strain Isolated from Traditional Maasai Fermented Milk

  • Jeong, Haeyoung;Choi, Sanghaeng;Park, Gun-Seok;Ji, Yosep;Park, Soyoung;Holzapfel, Wilhelm Heinrich;Mathara, Julius Maina;Kang, Jihee
    • Microbiology and Biotechnology Letters
    • /
    • v.47 no.1
    • /
    • pp.25-33
    • /
    • 2019
  • Lactobacillus rhamnosus BFE5264, isolated from a Maasai fermented milk product ("kule naoto"), was previously shown to exhibit bile acid resistance, cholesterol assimilation, and adhesion to HT29-MTX cells in vitro. In this study, we re-annotated and analyzed the previously reported complete genome sequence of strain BFE5264. The genome consists of a circular chromosome of 3,086,152 bp and a putative plasmid, which is the largest one identified among L. rhamnosus strains. Among the 2,883 predicted protein-coding genes, those with carbohydrate-related functions were the most abundant. Genome analysis of strain BFE5264 revealed two consecutive CRISPR regions and no known virulence factors or antimicrobial resistance genes. In addition, previously known highly variable regions in the genomes of L. rhamnosus strains were also evident in strain BFE5264. Pairwise comparison with the most studied probiotic strain L. rhamnosus GG revealed strain BFE5264-specific deletions, probably due to insertion sequence-mediated recombination. The latter was associated with loss of the spaCBA pilin gene cluster and exopolysaccharide biosynthetic genes. Comparative genomic analysis of the sequences from all available L. rhamnosus strains revealed that they were clustered into two groups, being within the same species boundary based on the average nucleotide identities. Strain BFE5264 had a sister group relationship with the group that contained strain GG, but neither ANI-based hierarchical clustering nor core-gene-based phylogenetic tree construction showed a clear distinctive pattern associated with the isolation source, implying that the genotype alone cannot account for their ecological niches. These results provide insights into the probiotic mechanisms of strain BFE5264 at the genomic level.

Identification of novel susceptibility genes associated with bone density and osteoporosis in Korean women

  • Bo-Young Kim;Do-Wan Kim;Eunkuk Park;Jeonghyun Kim;Chang-Gun Lee;Hyun-Seok Jin;Seon-Yong Jeong
    • Journal of Genetic Medicine
    • /
    • v.19 no.2
    • /
    • pp.63-75
    • /
    • 2022
  • Purpose: Osteoporosis is a common calcium and metabolic skeletal disease which is characterized by decreased bone mass, microarchitectural deterioration of bone tissue and impaired bone strength, thereby leading to enhanced risk of bone fragility. In this study, we aimed to identify novel genes for susceptibility to osteoporosis and/or bone density. Materials and Methods: To identify differentially expressed genes (DEGs) between control and osteoporosis-induced cells, annealing control primer-based differential display reverse-transcription polymerase chain reaction (RT-PCR) was carried out in pre-osteoblast MC3T3-E1 cells. Expression levels of the identified DEGs were evaluated by quantitative RT-PCR. Association studies for the quantitative bone density analysis and osteoporosis case-control analysis of single nucleotide polymorphism (SNPs) were performed in Korean women (3,570 subjects) from the Korean Association REsource (KARE) study cohort. Results: Comparison analysis of expression levels of the identified DEGs by quantitative RT-PCR found seven genes, Anxa6, Col5a1, Col6a2, Eno1, Myof, Nfib, and Scara5, that showed significantly different expression between the dexamethason-treated and untreated MC3T3-E1 cells and between the ovariectomized osteoporosis-induced mice and sham mice. Association studies revealed that there was a significant association between the SNPs in the five genes, ANXA6, COL5A1, ENO1, MYOF, and SCARA5, and bone density and/or osteoporosis. Conclusion: Using a whole-genome comparative expression analysis, gene expression evaluation analysis, and association analysis, we found five genes that were significantly associated with bone density and/or osteoporosis. Notably, the association P-values of the SNPs in the ANXA6 and COL5A1 genes were below the Bonferroni-corrected significance level.

Temperature Effect on the Growth Parameters of Rice during Vegetative Period

  • Yin Myat Myat Min;Seo-Young Yang;Hyeon-Seok Lee;Myeong-Gu Choi;Chung-Gun Lee;Woon-Ha Hwang
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.133-133
    • /
    • 2022
  • Temperature is a crucial environmental factor for rice cultivation due to the climate change and can influence the rice growth and development. Therefore, the effect of temperature on plant growth characters was examined during the vegetative stage. Plants were grown under three different temperatures: 23℃/13℃ for 18℃, 26℃/16℃ for 21℃ and 29℃/19℃ for 24℃ in the phytotron. The temperature was treated after transplanting and ended in early panicle initiation stage. Heading date of the two varieties were strongly affected by the temperature and were delayed in the 18℃. The plant height in the 18℃ was 21 % shorter than the 21℃ and 24℃ and the tiller and leaf number were increased in the 18℃. All the growth rates of the characters were the slowest in 18℃. The stem dry weight was significantly increased in 18℃. Nitrogen content was increased in the leaves of 18℃ whereas available phosphate and potassium content was found to be increased in the stems of 21℃ and 24℃. OsNRT 2.1 was overexpressed in the leaves and stems of 18℃ and OsNRT2.3a could be expressed in 18℃ and 21℃ temperatures whereas more expressed in 21℃. OsPT1 and OsPT6 could be expressed in the leaf of 18℃ and 24℃ but could be expressed in the stem of 18℃. OsHAK1 and OsHAK5 could be overexpressed in the leaves and stems of 18℃. For hormone, OsCKX2 gene was found to be up regulated in the leaves of 18℃ and OsIAA1 gene could be expressed more in the stem of 24℃.

  • PDF

The change of Phytophthora infestans Populations in South Korea using Traditional Markers and Genome Analyses

  • Do Hee Kwon;Jin Hee Seo;Yong Ik Jin;Gun Ho Jung;Jang Gyu Choi;Gyu Bin Lee;Kwang Ryong Jo;Jaeyoun Yi;Hwang Bae Sohn;Young Eun Park
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.257-257
    • /
    • 2022
  • Late blight, caused by the hemibiotrophic oomycete pathogen Phytophthora infestans, has been the most important disease limiting potato production worldwide. P. infestans undergo major population shifts in agricultural systems via the successive emergence and migration of asexual lineages. The phenotypic and genotypic bases of these selective sweeps are largely unknown but management strategies need to adapt to reflect the changing pathogen population. Here, we used molecular markers to divide the 86 South Korea isolates into six clonal lineages: KR_1_A1, KR_2_A2, SIB-1, US-11, SIB-1 like, and KR-2 like. We documented the emergence of a new lineage, termed SIB-1 like, and KR-2 like, and their rapid replacement of other lineages to exceed 35% of the pathogen population across South Korea. Genome analyses of the Korean P. infestans populations revealed extensive genetic polymorphism, particularly in effector genes. Importantly, SIB-1 like isolates carry an intact Avr8 effector gene that triggers resistance in potato carrying the corresponding R immune receptor gene R8 cloned from Solarium demissum. These findings point toward a strategy for deploying genetic resistance to mitigate the impact of the SIB-1 like lineage and illustrate how pathogen population monitoring, combined with genome analysis, informs the management of devastating disease epidemics. Further study is being done on pathogenicity of the SIB-1 like isolates on cultivated potatoes and changes in expression patterns of disease effector genes within the SIB-1 like isolates

  • PDF

Comparative Transcriptome Analysis of Sucrose Biosynthesis-Associated Gene Expression Using RNA-Seq at Various Growth Periods in Sugar Beet (Beta vulgaris L.)

  • Baul Yang;Ye-Jin Lee;Dong-Gun Kim;Sang Hoon Kim;Woon Ji Kim;Jae Hoon Kim;So Hyeon Baek;Joon-Woo Ahn;Chang-Hyu Bae;Jaihyunk Ryu
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2023.04a
    • /
    • pp.63-63
    • /
    • 2023
  • Sugar beet (Beta vulgaris L.) is one of the most important sugar crops and provides up to 30% of the world's sugar production. In this study, we mainly performed RNA-sequencing to obtain identify putative genes involved in biosynthesis pathway of sucrose in sugar beet and comparative transcriptomic analyses in the four developmental stages (50, 90, 160 and 330 days after seedling). As a result of the sugar content analysis, it was increased significantly from 50 to 160 days after seedling (DAS), and then decreased at 330 DAS. On the other hand, the taproot weight, length, and width were increased during all the growth periods. Out of 21,451 genes with expressed value, 21,402 (99.77%) genes had functional descriptions. Among the three comparisons, S1 (50 DAS) vs. S2 (90 DAS), S1 vs. S3 (160 DAS), and S1 vs. S4 (330 DAS), expression profiling of the transcripts was identified 4,991 with differentially expressed genes (DEGs). By comparing the top 20 enriched gene ontology (GO) terms as three comparisons, the top GO terms were commonly confirmed with external encapsulating structure, cell wall, and extracellular regions. In addition, the 38 enriched candidate genes related to sucrose biosynthetic pathway were screened from the entire DEG pool, and the candidate genes might be providing a basic data for further sugar metabolism studies in development of sugar beet taproot.

  • PDF

Viral Load Dynamics After Symptomatic COVID-19 in Children With Underlying Malignancies During the Omicron Wave

  • Ye Ji Kim;Hyun Mi Kang;In Young Yoo;Jae Won Yoo;Seong Koo Kim;Jae Wook Lee;Dong Gun Lee;Nack-Gyun Chung;Yeon-Joon Park;Dae Chul Jeong;Bin Cho
    • Pediatric Infection and Vaccine
    • /
    • v.30 no.2
    • /
    • pp.73-83
    • /
    • 2023
  • Purpose: This study aimed to investigate the viral load dynamics in children with underlying malignancies diagnosed with symptomatic coronavirus disease 2019 (COVID-19). Methods: This was a retrospective longitudinal cohort study of patients <19 years old with underlying hemato-oncologic malignancies that were diagnosed with their first symptomatic severe acute respiratory syndrome coronavirus 2 polymerase chain reaction (PCR)-confirmed COVID-19 infection during March 1 to August 30, 2022. Review of electronic medical records and telephone surveys were undertaken to assess the clinical presentations and transmission route of the patients. Thresholds of negligible likelihood of infectious virus was defined as E gene reverse transcription (RT)-PCR cycle threshold (Ct) value ≥25. Results: During the 6-month study period, a total of 43 children with 44 episodes of COVID-19 were included. Of the 44 episodes, the median age of the patients included was 8 years old (interquartile range [IQR], 4.9-10.5), and the most common underlying disease was acute lymphoid leukemia (n=30, 68.2%), followed by patients post-hematopoietic stem cell transplantation (n=8, 18.2%). Majority of the patients had mild COVID-19 (n=32, 72.7%), and three patients (7.0%) had severe/critical COVID-19. Furthermore, 2.3% (n=1) died of COVID-19 associated acute respiratory distress syndrome. The largest percentage of the patients showed E gene RT-PCR Ct value ≥25 between 15-21 days (n=13, 39.4%), followed by 22-28 days (n=10, 30.3%). In 15.2% (n=5), E gene RT-PCR Ct value remained <25 beyond 28 days after initial positive PCR. Refractory malignancy status (β, 67.0; 95% confidence interval, 7.0-17.0; P=0.030) was significantly associated with prolonged duration of E gene RT-PCR <25. A patient with prolonged duration of E gene RT-PCR Ct value <25 was suspected to have infectivity shown by the transmission of the virus to his mother at day 86 after his initial positive test. Conclusions: Children that acquire symptomatic COVID-19 during refractory malignancy state are at a high risk for prolonged shedding warranting PCR-based transmission precautions in this cohort of patients.

Quality of White Bread Containing Aster yomena Powder (쑥부쟁이 분말 첨가 식빵의 품질 특성)

  • Kim, Yong-Joo;Jeong, Ji-Suk;Kim, Eun-Ha;Son, Byeong-Gil;Go, Geun-Bae
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.1
    • /
    • pp.91-99
    • /
    • 2016
  • Aster yomena is a perennial plant that belongs to the Asteraceae family. Seasoned wild vegetables are commonly used as functional ingredients because of their bioactive effects against oxidation, cancer, and inflammation. A recent report showed that ethanol extracts from Aster yomena effectively inhibited gene expression related to lipid accumulation within interstitial cells to prevent obesity, further raising awareness of its usefulness as a highly functional ingredient. Several studies have investigated Aster yomena, but none have investigated the effects of processing on its use. Therefore, this study investigated the quality characteristics and antioxidative activity of breads in which refined salt was replaced with Aster yomena powder at 0, 0.5, 1.0, 1.5, or 2.0%. Bread containing any amount of Aster yomena powder did not differ significantly from the control in terms of appearance, aroma, taste, texture, and overall preference. In addition, higher levels of added Aster yomena powder were associated with greater 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity indicating the potential for production of highly functional bread and noodle products using this material.

A Case Study of the Hindrance Factors of Open Innovation in Korean Large-Scale Companies Focused on WFGM Model (국내 대기업의 개방형 혁신 저해요인에 대한 WFGM 관점 분석 사례)

  • Cho, Yo-Han;Ryu, Christopher J.;Lim, Gyoo-Gun;Lee, Dae-Chul
    • Journal of Information Technology Applications and Management
    • /
    • v.19 no.2
    • /
    • pp.249-263
    • /
    • 2012
  • Recently the open innovation is considered as one of the important issues for the survival strategy of a company in the industry. There have been several researches and practices on this topic. However, previous researches are mainly focused on the study of successful cases and some statistical analyses on the relationship between the open innovation and its performance. There are rare researches on the hindrance factors in the practical level. This paper tries to find some hinderance factors for the open innovation in Korean large-scale companies based on the WFGM(Want-Find-Get-Manage) model proposed by Gene Slowinski(2006). Especially this research focused on each processes of open innovation by in-depth interviews for two representative large companies in Korea. From the result of this research we come to know that the critical hindrance factor in the WANT step is the uncertain definition of the necessary technologies for the company. Issues on establishing and maintaining the innovation network are in the FIND step. Technology evaluation, technology introduction channel and technology copying issues are in the GET step. Communication issues, technology feasibility and lack of competition are in the MANAGE step. This paper finds some hindrance factors in each process step of open innovation, which gives some implications for the companies that want to adopt open innovation.