DOI QR코드

DOI QR Code

Comparative Genomic Analysis of Lactobacillus rhamnosus BFE5264, a Probiotic Strain Isolated from Traditional Maasai Fermented Milk

  • Received : 2018.07.13
  • Accepted : 2018.10.09
  • Published : 2019.03.28

Abstract

Lactobacillus rhamnosus BFE5264, isolated from a Maasai fermented milk product ("kule naoto"), was previously shown to exhibit bile acid resistance, cholesterol assimilation, and adhesion to HT29-MTX cells in vitro. In this study, we re-annotated and analyzed the previously reported complete genome sequence of strain BFE5264. The genome consists of a circular chromosome of 3,086,152 bp and a putative plasmid, which is the largest one identified among L. rhamnosus strains. Among the 2,883 predicted protein-coding genes, those with carbohydrate-related functions were the most abundant. Genome analysis of strain BFE5264 revealed two consecutive CRISPR regions and no known virulence factors or antimicrobial resistance genes. In addition, previously known highly variable regions in the genomes of L. rhamnosus strains were also evident in strain BFE5264. Pairwise comparison with the most studied probiotic strain L. rhamnosus GG revealed strain BFE5264-specific deletions, probably due to insertion sequence-mediated recombination. The latter was associated with loss of the spaCBA pilin gene cluster and exopolysaccharide biosynthetic genes. Comparative genomic analysis of the sequences from all available L. rhamnosus strains revealed that they were clustered into two groups, being within the same species boundary based on the average nucleotide identities. Strain BFE5264 had a sister group relationship with the group that contained strain GG, but neither ANI-based hierarchical clustering nor core-gene-based phylogenetic tree construction showed a clear distinctive pattern associated with the isolation source, implying that the genotype alone cannot account for their ecological niches. These results provide insights into the probiotic mechanisms of strain BFE5264 at the genomic level.

Keywords

References

  1. Butel MJ. 2014. Probiotics, gut microbiota and health. Med. Mal. Infect. 44: 1-8. https://doi.org/10.1016/j.medmal.2013.10.002
  2. Lozupone CA, Stombaugh JI, Gordon JI, Jansson JK, Knight R. 2012. Diversity, stability and resilience of the human gut microbiota. Nature 489: 220-230. https://doi.org/10.1038/nature11550
  3. Cammarota G, Ianiro G, Bibbo S, Gasbarrini A. 2014. Gut microbiota modulation: probiotics, antibiotics or fecal microbiota transplantation? Intern Emerg. Med. 9: 365-373. https://doi.org/10.1007/s11739-014-1069-4
  4. Wang J, Tang H, Zhang C, Zhao Y, Derrien M, Rocher E, et al. 2015. Modulation of gut microbiota during probiotic-mediated attenuation of metabolic syndrome in high fat diet-fed mice. ISME J. 9: 1-15. https://doi.org/10.1038/ismej.2014.99
  5. Arora T, Backhed F. 2016. The gut microbiota and metabolic disease: current understanding and future perspectives. J. Intern. Med. 280: 339-349. https://doi.org/10.1111/joim.12508
  6. Sun Z, Harris HM, McCann A, Guo C, Argimon S, Zhang W, et al. 2015. Expanding the biotechnology potential of lactobacilli through comparative genomics of 213 strains and associated genera. Nat. Commun. 6: 8322. https://doi.org/10.1038/ncomms9322
  7. Mathara JM, Schillinger U, Kutima PM, Mbugua SK, Holzapfel WH. 2004. Isolation, identification and characterisation of the dominant microorganisms of kule naoto: the Maasai traditional fermented milk in Kenya. Int. J. Food Microbiol. 94: 269-278. https://doi.org/10.1016/j.ijfoodmicro.2004.01.008
  8. Mathara JM, Schillinger U, Guigas C, Franz C, Kutima PM, Mbugua SK, et al. 2008. Functional characteristics of Lactobacillus spp. from traditional Maasai fermented milk products in Kenya. Int. J. Food Microbiol. 126: 57-64. https://doi.org/10.1016/j.ijfoodmicro.2008.04.027
  9. Yoon HS, Ju JH, Kim HN, Park HJ, Ji Y, Lee JE, et al. 2013. Reduction in cholesterol absorption in Caco-2 cells through the down-regulation of Niemann-Pick C1-like 1 by the putative probiotic strains Lactobacillus rhamnosus BFE5264 and Lactobacillus plantarum NR74 from fermented foods. Int. J. Food Sci. Nutr. 64: 44-52. https://doi.org/10.3109/09637486.2012.706598
  10. Yoon HS, Ju JH, Kim H, Lee J, Park HJ, Ji Y, et al. 2011. Lactobacillus rhamnosus BFE 5264 and Lactobacillus plantarum NR74 promote cholesterol excretion through the up-regulation of ABCG5/8 in Caco-2 cells. Probiotics Antimicrob. Proteins. 3: 194-203. https://doi.org/10.1007/s12602-011-9086-3
  11. Yoon HS, Ju JH, Lee JE, Park HJ, Lee JM, Shin HK, et al. 2013. The probiotic Lactobacillus rhamnosus BFE5264 and Lactobacillus plantarum NR74 promote cholesterol efflux and suppress inflammation in THP-1 cells. J. Sci. Food Agric. 93: 781-787. https://doi.org/10.1002/jsfa.5797
  12. Park S, Kang J, Choi S, Park H, Hwang E, Kang Y, et al. 2018. Cholesterol- lowering effect of Lactobacillus rhamnosus BFE5264 and its influence on the gut microbiome and propionate level in a murine model. PLoS One. 13: e0203150-e0203150. https://doi.org/10.1371/journal.pone.0203150
  13. Choi SH, Ji Y, Park S, Mathara J, Holzapfel W, Kang J. 2017. Complete genome sequence of Lactobacillus rhamnosus BFE5264, isolated from maasai traditional fermented milk. Genome Announc. 5: pii: e00563-17.
  14. Sola-Oladokun B, Culligan EP, Sleator RD. 2017. Engineered probiotics: applications and biological containment. Annu. Rev. Food Sci. Technol. 8: 353-370. https://doi.org/10.1146/annurev-food-030216-030256
  15. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP, Zaslavsky L, et al. 2016. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res. 44: 6614-6624. https://doi.org/10.1093/nar/gkw569
  16. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, et al. 2008. The RAST Server: rapid annotations using subsystems technology. BMC Genomics 9: 75. https://doi.org/10.1186/1471-2164-9-75
  17. Galperin MY, Makarova KS, Wolf YI, Koonin EV. 2015. Expanded microbial genome coverage and improved protein family annotation in the COG database. Nucleic. Acids. Res. 43: D261-269. https://doi.org/10.1093/nar/gku1223
  18. Bertelli C, Laird MR, Williams KP, Simon Fraser University Research Computing G, Lau BY, Hoad G, et al. 2017. Island Viewer 4: expanded prediction of genomic islands for larger-scale datasets. Nucleic Acids Res. 45: W30-W35. https://doi.org/10.1093/nar/gkx343
  19. Blin K, Wolf T, Chevrette MG, Lu X, Schwalen CJ, Kautsar SA, et al. 2017. antiSMASH 4.0-improvements in chemistry prediction and gene cluster boundary identification. Nucleic Acids Res. 45: W36-W41. https://doi.org/10.1093/nar/gkx319
  20. Olm MR, Brown CT, Brooks B, Banfield JF. 2017. dRep: a tool for fast and accurate genomic comparisons that enables improved genome recovery from metagenomes through de-replication. ISME J. 11: 2864-2868. https://doi.org/10.1038/ismej.2017.126
  21. Page AJ, Cummins CA, Hunt M, Wong VK, Reuter S, Holden MT, et al. 2015. Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics 31: 3691-3693. https://doi.org/10.1093/bioinformatics/btv421
  22. Price MN, Dehal PS, Arkin AP. 2010. FastTree 2--approximately maximum-likelihood trees for large alignments. PLoS One. 5: e9490. https://doi.org/10.1371/journal.pone.0009490
  23. Sahl JW, Caporaso JG, Rasko DA, Keim P. 2014. The large-scale blast score ratio (LS-BSR) pipeline: a method to rapidly compare genetic content between bacterial genomes. PeerJ 2: e332. https://doi.org/10.7717/peerj.332
  24. Letunic I, Bork P. 2016. Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res. 44: W242-245. https://doi.org/10.1093/nar/gkw290
  25. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y, Seo H, et al. 2017. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int. J. Syst. Evol. Microbiol. 67: 1613-1617. https://doi.org/10.1099/ijsem.0.001755
  26. Douillard FP, Ribbera A, Kant R, Pietila TE, Jarvinen HM, Messing M, et al. 2013. Comparative genomic and functional analysis of 100 Lactobacillus rhamnosus strains and their comparison with strain GG. PLoS Genet. 9: e1003683. https://doi.org/10.1371/journal.pgen.1003683
  27. Kankainen M, Paulin L, Tynkkynen S, von Ossowski I, Reunanen J, Partanen P, et al. 2009. Comparative genomic analysis of Lactobacillus rhamnosus GG reveals pili containing a human- mucus binding protein. Proc. Natl. Acad. Sci. USA 106: 17193-17198. https://doi.org/10.1073/pnas.0908876106
  28. Reunanen J, von Ossowski I, Hendrickx AP, Palva A, de Vos WM. 2012. Characterization of the SpaCBA pilus fibers in the probiotic Lactobacillus rhamnosus GG. Appl. Environ. Microbiol. 78: 2337-2344. https://doi.org/10.1128/AEM.07047-11
  29. Ceapa C, Davids M, Ritari J, Lambert J, Wels M, Douillard FP, et al. 2016. The variable regions of Lactobacillus rhamnosus genomes reveal the dynamic evolution of metabolic and host-adaptation repertoires. Genome Biol. Evol. 8: 1889-1905. https://doi.org/10.1093/gbe/evw123
  30. Morita H, Toh H, Oshima K, Murakami M, Taylor TD, Igimi S, et al. 2009. Complete genome sequence of the probiotic Lactobacillus rhamnosus ATCC 53103. J. Bacteriol. 191: 7630-7631. https://doi.org/10.1128/JB.01287-09
  31. Ondov BD, Treangen TJ, Melsted P, Mallonee AB, Bergman NH, Koren S, et al. 2016. Mash: fast genome and metagenome distance estimation using MinHash. Genome Biol. 17: 132. https://doi.org/10.1186/s13059-016-0997-x
  32. Varghese NJ, Mukherjee S, Ivanova N, Konstantinidis KT, Mavrommatis K, Kyrpides NC, et al. 2015. Microbial species delineation using whole genome sequences. Nucleic Acids Res. 43: 6761-6771. https://doi.org/10.1093/nar/gkv657
  33. Wuyts S, Wittouck S, De Boeck I, Allonsius CN, Pasolli E, Segata N, et al. 2017. Large-scale phylogenomics of the Lactobacillus casei group highlights taxonomic inconsistencies and reveals novel clade-associated features. mSystems 2: pii: e00061-17.
  34. Oliveira LC, Silveira AMM, Monteiro AS, Dos Santos VL, Nicoli JR, Azevedo VAC, et al. 2017. In silico prediction, in vitro antibacterial spectrum, and physicochemical properties of a putative bacteriocin produced by Lactobacillus rhamnosus strain L156.4. Front Microbiol. 8: 876. https://doi.org/10.3389/fmicb.2017.00876
  35. Ceapa C, Lambert J, van Limpt K, Wels M, Smokvina T, Knol J, Kleerebezem M. 2015. Correlation of Lactobacillus rhamnosus genotypes and carbohydrate utilization signatures determined by phenotype profiling. Appl. Environ. Microbiol. 81: 5458-5470. https://doi.org/10.1128/AEM.00851-15
  36. Begley M, Hill C, Gahan CG. 2006. Bile salt hydrolase activity in probiotics. Appl. Environ. Microbiol. 72: 1729-1738. https://doi.org/10.1128/AEM.72.3.1729-1738.2006
  37. Yan F, Cao H, Cover TL, Whitehead R, Washington MK, Polk DB. 2007. Soluble proteins produced by probiotic bacteria regulate intestinal epithelial cell survival and growth. Gastroenterology 132: 562-575. https://doi.org/10.1053/j.gastro.2006.11.022
  38. Yan F, Polk DB. 2012. Characterization of a probiotic-derived soluble protein which reveals a mechanism of preventive and treatment effects of probiotics on intestinal inflammatory diseases. Gut Microbes. 3: 25-28. https://doi.org/10.4161/gmic.19245
  39. Wang Y, Liu L, Moore DJ, Shen X, Peek RM, Acra SA, et al. 2017. An LGG-derived protein promotes IgA production through upregulation of APRIL expression in intestinal epithelial cells. Mucosal Immunol. 10: 373-384. https://doi.org/10.1038/mi.2016.57
  40. Mercanti DJ, Carminati D, Reinheimer JA, Quiberoni A. 2011. Widely distributed lysogeny in probiotic lactobacilli represents a potentially high risk for the fermentative dairy industry. Int. J. Food Microbiol. 144: 503-510. https://doi.org/10.1016/j.ijfoodmicro.2010.11.009
  41. Alikhan NF, Petty NK, Ben Zakour NL, Beatson SA. 2011. BLAST Ring Image Generator (BRIG): simple prokaryote genome comparisons. BMC Genomics. 12: 402. https://doi.org/10.1186/1471-2164-12-402
  42. Darling AE, Mau B, Perna NT. 2010. progressiveMauve: multiple genome alignment with gene gain, loss and rearrangement. PLoS One. 5: e11147. https://doi.org/10.1371/journal.pone.0011147