DOI QR코드

DOI QR Code

Identification of novel susceptibility genes associated with bone density and osteoporosis in Korean women

  • Bo-Young Kim (Department of Medical Genetics, Ajou University School of Medicine) ;
  • Do-Wan Kim (Department of Medical Genetics, Ajou University School of Medicine) ;
  • Eunkuk Park (Department of Medical Genetics, Ajou University School of Medicine) ;
  • Jeonghyun Kim (Department of Medical Genetics, Ajou University School of Medicine) ;
  • Chang-Gun Lee (Department of Medical Genetics, Ajou University School of Medicine) ;
  • Hyun-Seok Jin (Department of Biomedical Laboratory Science, College of Life and Health Sciences, Hoseo University) ;
  • Seon-Yong Jeong (Department of Medical Genetics, Ajou University School of Medicine)
  • Received : 2022.11.13
  • Accepted : 2022.12.16
  • Published : 2022.12.31

Abstract

Purpose: Osteoporosis is a common calcium and metabolic skeletal disease which is characterized by decreased bone mass, microarchitectural deterioration of bone tissue and impaired bone strength, thereby leading to enhanced risk of bone fragility. In this study, we aimed to identify novel genes for susceptibility to osteoporosis and/or bone density. Materials and Methods: To identify differentially expressed genes (DEGs) between control and osteoporosis-induced cells, annealing control primer-based differential display reverse-transcription polymerase chain reaction (RT-PCR) was carried out in pre-osteoblast MC3T3-E1 cells. Expression levels of the identified DEGs were evaluated by quantitative RT-PCR. Association studies for the quantitative bone density analysis and osteoporosis case-control analysis of single nucleotide polymorphism (SNPs) were performed in Korean women (3,570 subjects) from the Korean Association REsource (KARE) study cohort. Results: Comparison analysis of expression levels of the identified DEGs by quantitative RT-PCR found seven genes, Anxa6, Col5a1, Col6a2, Eno1, Myof, Nfib, and Scara5, that showed significantly different expression between the dexamethason-treated and untreated MC3T3-E1 cells and between the ovariectomized osteoporosis-induced mice and sham mice. Association studies revealed that there was a significant association between the SNPs in the five genes, ANXA6, COL5A1, ENO1, MYOF, and SCARA5, and bone density and/or osteoporosis. Conclusion: Using a whole-genome comparative expression analysis, gene expression evaluation analysis, and association analysis, we found five genes that were significantly associated with bone density and/or osteoporosis. Notably, the association P-values of the SNPs in the ANXA6 and COL5A1 genes were below the Bonferroni-corrected significance level.

Keywords

Acknowledgement

This research was supported by a grant of the Korea Health Technology R&D Project through the Korea Health Industry Development Institution (KHIDI), funded by the Ministry of Health & Welfare, Republic of Korea (grant no. HR22C1734), the Korea Initiative for fostering University of Research and Innovation Program of the National Research Foundation (NRF) funded by the Korean government (MSIT) (No. NRF2021M3H1A104892211), and an intramural research grant from the Korea National Institute of Health (2020-NG-021).

References

  1. Raisz LG. Pathogenesis of osteoporosis: concepts, conflicts, and prospects. J Clin Invest 2005;115:3318-25. https://doi.org/10.1172/JCI27071
  2. Sambrook P, Cooper C. Osteoporosis. Lancet 2006;367:2010-8. Erratum in: Lancet 2006;368:28.
  3. Teitelbaum SL. Bone resorption by osteoclasts. Science 2000;289:1504-8. https://doi.org/10.1126/science.289.5484.1504
  4. Khosla S, Westendorf JJ, Oursler MJ. Building bone to reverse osteo-porosis and repair fractures. J Clin Invest 2008;118:421-8. https://doi.org/10.1172/JCI33612
  5. Johnell O, Kanis J. Epidemiology of osteoporotic fractures. Osteoporos Int 2005;16 Suppl 2:S3-7. https://doi.org/10.1007/s00198-004-1702-6
  6. Sigurdsson G, Halldorsson BV, Styrkarsdottir U, Kristjansson K, Stefansson K. Impact of genetics on low bone mass in adults. J Bone Miner Res 2008;23:1584-90.
  7. Torgerson DJ, Campbell MK, Thomas RE, Reid DM. Prediction of perimenopausal fractures by bone mineral density and other risk factors. J Bone Miner Res 1996;11:293-7.
  8. Liu H, Zhao H, Lin H, Li Z, Xue H, Zhang Y, et al. Relationship of COL9A1 and SOX9 genes with genetic susceptibility of postmenopausal osteoporosis. Calcif Tissue Int 2020;106:248-55. https://doi.org/10.1007/s00223-019-00629-7
  9. Yang YQ, Yu XH, Bo L, Lei SF, Deng FY. Genetic risk for osteoporosis and the benefit of adherence to healthy lifestyles. Int J Public Health 2022;67:1605114.
  10. Hosoi T. Genetic aspects of osteoporosis. J Bone Miner Metab 2010;28:601-7. https://doi.org/10.1007/s00774-010-0217-9
  11. Ralston SH, Uitterlinden AG. Genetics of osteoporosis. Endocr Rev 2010;31:629-62.
  12. Gueguen R, Jouanny P, Guillemin F, Kuntz C, Pourel J, Siest G. Segregation analysis and variance components analysis of bone mineral density in healthy families. J Bone Miner Res 1995;10:2017-22.
  13. Hsu YH, Xu X, Terwedow HA, Niu T, Hong X, Wu D, et al. Largescale genome-wide linkage analysis for loci linked to BMD at different skeletal sites in extreme selected sibships. J Bone Miner Res 2007;22:184-94.
  14. Kaufman JM, Ostertag A, Saint-Pierre A, Cohen-Solal M, Boland A, Van Pottelbergh I, et al. Genome-wide linkage screen of bone mineral density (BMD) in European pedigrees ascertained through a male relative with low BMD values: evidence for quantitative trait loci on 17q21-23, 11q12-13, 13q12-14, and 22q11. J Clin Endocrinol Metab 2008;93:3755-62. https://doi.org/10.1210/jc.2008-0678
  15. Richards JB, Kavvoura FK, Rivadeneira F, Styrkarsdottir U, Estrada K, Halldorsson BV, et al.; Genetic Factors for Osteoporosis Consortium. Collaborative meta-analysis: associations of 150 candidate genes with osteoporosis and osteoporotic fracture. Ann Intern Med 2009;151:528-37. https://doi.org/10.7326/0003-4819-151-8-200910200-00006
  16. Styrkarsdottir U, Halldorsson BV, Gretarsdottir S, Gudbjartsson DF, Walters GB, Ingvarsson T, et al. New sequence variants associated with bone mineral density. Nat Genet 2009;41:15-7. https://doi.org/10.1038/ng.284
  17. Xiong DH, Liu XG, Guo YF, Tan LJ, Wang L, Sha BY, et al. Genome-wide association and follow-up replication studies identified ADAMTS18 and TGFBR3 as bone mass candidate genes in different ethnic groups. Am J Hum Genet 2009;84:388-98. https://doi.org/10.1016/j.ajhg.2009.01.025
  18. Cho YS, Go MJ, Kim YJ, Heo JY, Oh JH, Ban HJ, et al. A large-scale genome-wide association study of Asian populations uncovers genetic factors influencing eight quantitative traits. Nat Genet 2009;41:527-34. https://doi.org/10.1038/ng.357
  19. Xu XH, Dong SS, Guo Y, Yang TL, Lei SF, Papasian CJ, et al. Molecular genetic studies of gene identification for osteoporosis: the 2009 update. Endocr Rev 2010;31:447-505. https://doi.org/10.1210/er.2009-0032
  20. Canalis E, Mazziotti G, Giustina A, Bilezikian JP. Glucocorticoidinduced osteoporosis: pathophysiology and therapy. Osteoporos Int 2007;18:1319-28. https://doi.org/10.1007/s00198-007-0394-0
  21. Olney RC. Mechanisms of impaired growth: effect of steroids on bone and cartilage. Horm Res 2009;72 Suppl 1:30-5.
  22. Yun SI, Yoon HY, Jeong SY, Chung YS. Glucocorticoid induces apoptosis of osteoblast cells through the activation of glycogen synthase kinase 3beta. J Bone Miner Metab 2009;27:140-8. https://doi.org/10.1007/s00774-008-0019-5
  23. Quarles LD, Yohay DA, Lever LW, Caton R, Wenstrup RJ. Distinct proliferative and differentiated stages of murine MC3T3-E1 cells in culture: an in vitro model of osteoblast development. J Bone Miner Res 1992;7:683-92.
  24. Choi JY, Lee BH, Song KB, Park RW, Kim IS, Sohn KY, et al. Expression patterns of bone-related proteins during osteoblastic differentiation in MC3T3-E1 cells. J Cell Biochem 1996;61:609-18. https://doi.org/10.1002/(SICI)1097-4644(19960616)61:4<609::AID-JCB15>3.0.CO;2-A
  25. Turner RT, Maran A, Lotinun S, Hefferan T, Evans GL, Zhang M, et al. Animal models for osteoporosis. Rev Endocr Metab Disord 2001;2:117-27. https://doi.org/10.1023/A:1010067326811
  26. Lelovas PP, Xanthos TT, Thoma SE, Lyritis GP, Dontas IA. The laboratory rat as an animal model for osteoporosis research. Comp Med 2008;58:424-30.
  27. Jee WS, Yao W. Overview: animal models of osteopenia and osteoporosis. J Musculoskelet Neuronal Interact 2001;1:193-207.
  28. Kim YJ, Kwak CI, Gu YY, Hwang IT, Chun JY. Annealing control primer system for identification of differentially expressed genes on agarose gels. Biotechniques 2004;36:424-6, 428, 430 passim. https://doi.org/10.2144/04363ST02
  29. Kanis JA, Melton LJ 3rd, Christiansen C, Johnston CC, Khaltaev N. The diagnosis of osteoporosis. J Bone Miner Res 1994;9:1137-41.
  30. Rabbee N, Speed TP. A genotype calling algorithm for affymetrix SNP arrays. Bioinformatics 2006;22:7-12. https://doi.org/10.1093/bioinformatics/bti741
  31. Barrett JC, Fry B, Maller J, Daly MJ. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 2005;21:263-5. https://doi.org/10.1093/bioinformatics/bth457
  32. Hedrick PW. Gametic disequilibrium measures: proceed with caution. Genetics 1987;117:331-41. https://doi.org/10.1093/genetics/117.2.331
  33. Chen NX, O'Neill KD, Chen X, Moe SM. Annexin-mediated matrix vesicle calcification in vascular smooth muscle cells. J Bone Miner Res 2008;23:1798-805. https://doi.org/10.1359/jbmr.080604
  34. Gerke V, Creutz CE, Moss SE. Annexins: linking Ca2+ signalling to membrane dynamics. Nat Rev Mol Cell Biol 2005;6:449-61. https://doi.org/10.1038/nrm1661
  35. Enrich C, Rentero C, de Muga SV, Reverter M, Mulay V, Wood P, et al. Annexin A6-linking Ca(2+) signaling with cholesterol transport. Bio-chim Biophys Acta 2011;1813:935-47. https://doi.org/10.1016/j.bbamcr.2010.09.015
  36. Theobald J, Smith PD, Jacob SM, Moss SE. Expression of annexin VI in A431 carcinoma cells suppresses proliferation: a possible role for annexin VI in cell growth regulation. Biochim Biophys Acta 1994;1223:383-90. https://doi.org/10.1016/0167-4889(94)90099-X
  37. Kim BY, Yoon HY, Yun SI, Woo ER, Song NK, Kim HG, et al. In vitro and in vivo inhibition of glucocorticoid-induced osteoporosis by the hexane extract of Poncirus trifoliata. Phytother Res 2011;25:1000-10. https://doi.org/10.1002/ptr.3373
  38. Vila de Muga S, Timpson P, Cubells L, Evans R, Hayes TE, Rentero C, et al. Annexin A6 inhibits Ras signalling in breast cancer cells. Oncogene 2009;28:363-77. https://doi.org/10.1038/onc.2008.386
  39. Grewal T, Koese M, Rentero C, Enrich C. Annexin A6-regulator of the EGFR/Ras signalling pathway and cholesterol homeostasis. Int J Biochem Cell Biol 2010;42:580-4. https://doi.org/10.1016/j.biocel.2009.12.020
  40. Kim TH, Hong JM, Shin ES, Kim HJ, Cho YS, Lee JY, et al. Polymorphisms in the Annexin gene family and the risk of osteonecrosis of the femoral head in the Korean population. Bone 2009;45:125-31. https://doi.org/10.1016/j.bone.2009.03.670
  41. Jin H, van't Hof RJ, Albagha OM, Ralston SH. Promoter and intron 1 polymorphisms of COL1A1 interact to regulate transcription and susceptibility to osteoporosis. Hum Mol Genet 2009;18:2729-38. https://doi.org/10.1093/hmg/ddp205
  42. Jin H, Evangelou E, Ioannidis JP, Ralston SH. Polymorphisms in the 5' flank of COL1A1 gene and osteoporosis: meta-analysis of published studies. Osteoporos Int 2011;22:911-21. https://doi.org/10.1007/s00198-010-1364-5
  43. Collins M, Mokone GG, September AV, van der Merwe L, Schwellnus MP. The COL5A1 genotype is associated with range of motion measurements. Scand J Med Sci Sports 2009;19:803-10. https://doi.org/10.1111/j.1600-0838.2009.00915.x
  44. Mokone GG, Schwellnus MP, Noakes TD, Collins M. The COL5A1 gene and Achilles tendon pathology. Scand J Med Sci Sports 2006;16:19-26. https://doi.org/10.1111/j.1600-0838.2005.00439.x
  45. Posthumus M, September AV, Schwellnus MP, Collins M. Investigation of the Sp1-binding site polymorphism within the COL1A1 gene in participants with Achilles tendon injuries and controls. J Sci Med Sport 2009;12:184-9.
  46. Posthumus M, September AV, O'Cuinneagain D, van der Merwe W, Schwellnus MP, Collins M. The COL5A1 gene is associated with increased risk of anterior cruciate ligament ruptures in female participants. Am J Sports Med 2009;37:2234-40. https://doi.org/10.1177/0363546509338266
  47. Malfait F, De Paepe A. Molecular genetics in classic Ehlers-Danlos syndrome. Am J Med Genet C Semin Med Genet 2005;139C:17-23. https://doi.org/10.1002/ajmg.c.30070
  48. Kim JW, Dang CV. Multifaceted roles of glycolytic enzymes. Trends Biochem Sci 2005;30:142-50.
  49. Terrier B, Degand N, Guilpain P, Servettaz A, Guillevin L, Mouthon L. Alpha-enolase: a target of antibodies in infectious and autoimmune diseases. Autoimmun Rev 2007;6:176-82. https://doi.org/10.1016/j.autrev.2006.10.004
  50. Kosa JP, Balla B, Speer G, Kiss J, Borsy A, Podani J, et al. Effect of menopause on gene expression pattern in bone tissue of nonosteoporotic women. Menopause 2009;16:367-77. https://doi.org/10.1097/gme.0b013e318188b260
  51. Sipos W, Pietschmann P, Rauner M, Kerschan-Schindl K, Patsch J. Pathophysiology of osteoporosis. Wien Med Wochenschr 2009;159:230-4.
  52. Khosla S. Update on estrogens and the skeleton. J Clin Endocrinol Metab 2010;95:3569-77. https://doi.org/10.1210/jc.2010-0856
  53. Bernatchez PN, Sharma A, Kodaman P, Sessa WC. Myoferlin is critical for endocytosis in endothelial cells. Am J Physiol Cell Physiol 2009;297:C484-92. https://doi.org/10.1152/ajpcell.00498.2008
  54. Davis DB, Delmonte AJ, Ly CT, McNally EM. Myoferlin, a candidate gene and potential modifier of muscular dystrophy. Hum Mol Genet 2000;9:217-26. https://doi.org/10.1093/hmg/9.2.217
  55. Jiang Y, Oliver P, Davies KE, Platt N. Identification and characterization of murine SCARA5, a novel class A scavenger receptor that is expressed by populations of epithelial cells. J Biol Chem 2006;281:11834-45.
  56. Li JY, Paragas N, Ned RM, Qiu A, Viltard M, Leete T, et al. Scara5 is a ferritin receptor mediating non-transferrin iron delivery. Dev Cell 2009;16:35-46.
  57. Takemura K, Sakashita N, Fujiwara Y, Komohara Y, Lei X, Ohnishi K, et al. Class A scavenger receptor promotes osteoclast differentiation via the enhanced expression of receptor activator of NF-kappaB (RANK). Biochem Biophys Res Commun 2010;391:1675-80. https://doi.org/10.1016/j.bbrc.2009.12.126
  58. Han JW, Zheng HF, Cui Y, Sun LD, Ye DQ, Hu Z, et al. Genome-wide association study in a Chinese Han population identifies nine new susceptibility loci for systemic lupus erythematosus. Nat Genet 2009;41:1234-7.