• Title/Summary/Keyword: gene discovery

Search Result 286, Processing Time 0.02 seconds

Characterization and Cofactor Binding Mechanism of a Novel NAD(P)H-Dependent Aldehyde Reductase from Klebsiella pneumoniae DSM2026

  • Ma, Cheng-Wei;Zhang, Le;Dai, Jian-Ying;Xiu, Zhi-Long
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.12
    • /
    • pp.1699-1707
    • /
    • 2013
  • During the fermentative production of 1,3-propanediol under high substrate concentrations, accumulation of intracellular 3-hydroxypropionaldehyde will cause premature cessation of cell growth and glycerol consumption. Discovery of oxidoreductases that can convert 3-hydroxypropionaldehyde to 1,3-propanediol using NADPH as cofactor could serve as a solution to this problem. In this paper, the yqhD gene from Klebsiella pneumoniae DSM2026, which was found encoding an aldehyde reductase (KpAR), was cloned and characterized. KpAR showed broad substrate specificity under physiological direction, whereas no catalytic activity was detected in the oxidation direction, and both NADPH and NADH can be utilized as cofactors. The cofactor binding mechanism was then investigated employing homology modeling and molecular dynamics simulations. Hydrogen-bond analysis showed that the hydrogen-bond interactions between KpAR and NADPH are much stronger than that for NADH. Free-energy decomposition dedicated that residues Gly37 to Val41 contribute most to the cofactor preference through polar interactions. In conclusion, this work provides a novel aldehyde reductase that has potential applications in the development of novel genetically engineered strains in the 1,3-propanediol industry, and gives a better understanding of the mechanisms involved in cofactor binding.

Antibacterial Activity of (2S)-7,4'-dihydroxy-5-methoxy-8-(${\gamma}$, ${\gamma}$-dimethylally)-flavanone against Methicillin-Resistant Staphylococcus aureus

  • Kim, Eun-Sook
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.23 no.3
    • /
    • pp.704-709
    • /
    • 2009
  • The emergence of methicillin-resistant of Staphylococcus aureus (MRSA) and vancomycin-resistant enterococci (VRE) has led to an urgent need for the discovery and development of new antibacterial agents. As part of an ongoing investigation into the antibacterial properties of the natural products, (2S)-7,4'-dihydroxy-5-methoxy-8-(${\gamma}$, ${\gamma}$-dimethylally)-f1avanone (2S-DMDF), isolated from the roots of Sophora flavescens, was found to be antibacterial active MRSA and VRE. Sophora flavescens has been used as antibacterial, antiviral, antiprotozoal, anti-inflammatory. Therefore, this study investigated the antibacterial activity of 2S-DMDF against all the bacterial strains tested. In this result, at the end point of an optically clear well, the minimum inhibitory concentrations (MICs) ranged from 0.97 to 15.6 mg/ml for 2S-DMDF, from 125 to 256 mg/ml for ampicillin, and from 64 to 512 mg/ml for gentamicin with MRSA, also, 7.8 to 15.6 mg/ml for 2S-DMDF, from 125 to 256 mg/ml for ampicillin, and from 512 to 1024< mg/ml for vacomicin with VRE. These findings indicated that the application of the tested 2S-DMDF alone might prove useful in the control and treatment of MRSA and VRE infections.

New Players in the BRCA1-mediated DNA Damage Responsive Pathway

  • Kim, Hongtae;Chen Junjie
    • Molecules and Cells
    • /
    • v.25 no.4
    • /
    • pp.457-461
    • /
    • 2008
  • DNA damage checkpoint is an important self-defense mechanism for the maintenance of genome stability. Defects in DNA damage signaling and repair lead to various disorders and increase tumor incidence in humans. In the past 10 years, we have identified many components involved in the DNA damage-signaling pathway, including the product of breast cancer susceptibility gene 1 (BRCA1). Mutations in BRCA1 are associated with increased risk of breast and ovarian cancers, highlighting the importance of this DNA damage-signaling pathway in tumor suppression. While it becomes clear that BRCA1 plays a crucial role in the DNA damage responsive pathway, exactly how BRCA1 receives DNA damage signals and exerts its checkpoint function has not been fully addressed. A series of recent studies reported the discovery of many novel components involved in DNA damage-signaling pathway. These newly identified checkpoint proteins, including RNF8, RAP80 and CCDC98, work in concern in recruiting BRCA1 to DNA damage sites and thus regulate BRCA1 function in G2/M checkpoint control. This review will summarize these recent findings and provide an updated view of the regulation of BRCA1 in response to DNA damage.

An EST-based approach for identifying genes expressed in the gills of olive flounder Paralichthys olivaceus

  • Lee, Jeong-Ho;Noh, Jae-Koo;Kim, Hyun-Chul;Park, Choul-Ji;Min, Byung-Hwa;Kim, Young-Ok;Kim, Jong-Hyun;Kim, Kyung-Kil;Kim, Woo-Jin;Myeong, Jeong-In
    • Journal of fish pathology
    • /
    • v.22 no.3
    • /
    • pp.383-389
    • /
    • 2009
  • Analysis of expressed sequence tags (ESTs) is an efficient approach for gene discovery, expression profiling, and development of resources useful for functional genomics studies. As part of studies on the immune system of olive flounder, a total of 251 EST sequences from gill cDNA library were generated to identify and characterize important genes in the immune machanisms of olive flounder. Of the 251 clones, 126 clones (50.2%) were identified as orthologues of known genes from olive flounder and other organisms. Among the 126 EST clones, 16 clones (12.7%) were representing 9 unique genes identified as homologous to the previously reported olive flounder ESTs, 100 clones (79.4%) representing 103unique genes were identified as orthologs of known genes from other organisms. We also identified several kinds of immune associated proteins, indicating EST as a powerful method for identifying immune related genes of fish as well as identifying novel genes. Further studies using cDNA microarrays are needed to identify the differentially expressed transcripts after disease infection.

Association between oropharyngeal microbiome and weight gain in piglets during pre and post weaning life

  • Bugenyi, Andrew Wange;Cho, Ho-Seong;Heo, Jaeyoung
    • Journal of Animal Science and Technology
    • /
    • v.62 no.2
    • /
    • pp.247-262
    • /
    • 2020
  • Birth weight and subsequent weight gain is of critical importance in the survival and performance of piglets on a commercial swine farm setting. Oropharyngeal microbiome could influence immunity, and feeding behavior thus impacting health and weight gain. We used 16S rRNA gene sequencing to profile the composition and predicted metabolic functionality of the oropharyngeal microbiota in 8 piglets (4 with a birthweight ≤ 1.0 kg and 4 with a birthweight ≥ 1.7 kg) at 11, 26, and 63 days of age. We found 9 genera that were significantly associated with average daily gain (ADG) at 11 days (false discovery rate, FDR < 0.05) and 26 days of age (FDR < 0.1), respectively. The microbial functional profile revealed several pathways associated with ADG (FDR < 0.05). Among these, pathways related to degradation of catechols showed a positive association with ADG at 11, 26, and 63 days of age, implying a potential to breakdown the host-derived catecholamines. We also noted that pathways related to the biodegradation of nucleosides and nucleotides increased with ADG during the pre-weaning phase, while those involved in their biosynthesis decreased. Our findings provide insights into the oropharyngeal microbial memberships and metabolic pathways that are involved in a piglet's weight gain. Thus, providing a basis for the development of strategies aimed at improving weight gain in pigs.

Discovery of Two New Talaromyces Species from Crop Field Soil in Korea

  • Adhikari, Mahesh;Yadav, Dil Raj;Kim, Sangwoo;Um, Yong Hyun;Kim, Hyung Seung;Lee, Hyang Burm;Lee, Youn Su
    • Mycobiology
    • /
    • v.43 no.4
    • /
    • pp.402-407
    • /
    • 2015
  • Two new fungal species of the genus Talaromyces, Talaromyces purpurogenus and Talaromyces trachyspermus from the Trichocomaceae family, were recovered during an investigation of fungal communities in soil collected from the Gangwon-do and Jeollanam-do provinces of Korea. These two species have not been previously officially reported from Korea. In this study, detailed descriptions of internal transcribed spacer rDNA and beta-tubulin gene regions of these two fungi are presented. Morphological features of the two fungi in five agar media, potato dextrose, oatmeal, malt extract, czapek yeast extract, and yeast extract sucrose, are also reported. The species were identified on the basis of molecular and morphological analysis, and herein we present data with detailed descriptions and figures.

Prospects of Application of Linkage Disequilibrium Mapping for Crop Improvement in Wild Silkworm (Antheraea mylitta Drury)

  • Vijayan, Kunjupillai;Singh, Ravindra Nath;Saratchandra, Beera
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.20 no.2
    • /
    • pp.37-43
    • /
    • 2010
  • The wild silkworm, Antheraea mylitta Drury (Lepidoptera: Saturniidae) is a polyphagous silk producing insect that feeds on Terminalia arjuna, T. tomentosa and Shorea robusta and is distributed in the forest belts in different states of India. Phenotypically distinct populations of the A. mylitta are called "eco-race" or "ecotypes". Genetic improvement of this wild silkworm has not progressed much due to lack of adequate information on the factors that control the expression of most of the economically important traits. Considering the amazing technological advances taking place in molecular biology, it is envisaged that it is now possible to take greater control on these intractable traits if a combination of genetic, molecular and bioinformatics tools are used. Linkage disequilibrium (LD) mapping is one such approach that has extensively been used in both animal and plant system to identify quantitative trait loci (QTLs) for a number of economically important traits. LD mapping has a number of advantages over conventional biparental linkage mapping. Therefore, LD mapping is considered more efficient for gene discovery to meet the challenge of connecting sequence diversity with heritable phenotypic differences. However, care must be taken to avoid detection of spurious associations which may occur due to population structure and variety interrelationships. In this review, we discuss how LD mapping is suitable for the dissection of complex traits in wild silkworms (Antheraea mylitta).

Osteoclast Activity and Osteoporosis

  • Kim, Hong-Hee
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2001.04a
    • /
    • pp.103-112
    • /
    • 2001
  • Bone homeostasis is maintained by a balance between activities of osteoblasts(bone forming cells) and osteoclasts (bone resorbing cells). The activities of these cells are closely regulated by multiple factors including hormones and cytokines. The cessation of estrogen at menopause disrupts the balanced regulation and is the main cause of osteoporosis in postmenopausal women. Recent molecular biological studies led to a discovery of tumor necrosis factor(TNF) and TNF receptor families genes that play critical roles in the regulation of osteoclast formation and function. RANKL (receptor activator of nuclear factor kappa B ligand; also called ODF, TRANCE, and OPGL) expressed on cells supporting osteoclast is essential for osteoclast differentiation, activation, and survival. RANK, the counter-receptor for RANKL, is expressed on progenitor and mature osteoclasts. The interaction between RANKL and RANK is requlated by a soluble decoy receptor OPG (osteoprotegerin). Gene knock out studies of these molecules showed profound effects on bone. These results prompted development of new strategies for treatment of bone diseases. Inhibition of osteoclast activity by blocking the RANKL-RANK interaction using OPG is being attempted. Research on the signaling pathways of RANK is also actively carried out. Screening natural products that inhibit the RANKL-RANK interaction or the activity of obteoclasts would be another effective means to a new drug target for bone resorbing diseases.

  • PDF

Microbial 2-Cys Peroxiredoxins: Insights into Their Complex Physiological Roles

  • Toledano, Michel B.;Huang, Bo
    • Molecules and Cells
    • /
    • v.39 no.1
    • /
    • pp.31-39
    • /
    • 2016
  • The peroxiredoxins (Prxs) constitute a very large and highly conserved family of thiol-based peroxidases that has been discovered only very recently. We consider here these enzymes through the angle of their discovery, and of some features of their molecular and physiological functions, focusing on complex phenotypes of the gene mutations of the 2-Cys Prxs subtype in yeast. As scavengers of the low levels of $H_2O_2$ and as $H_2O_2$ receptors and transducers, 2-Cys Prxs have been highly instrumental to understand the biological impact of $H_2O_2$, and in particular its signaling function. 2-Cys Prxs can also become potent chaperone holdases, and unveiling the in vivo relevance of this function, which is still not established, should further increase our knowledge of the biological impact and toxicity of $H_2O_2$. The diverse molecular functions of 2-Cys Prx explain the often-hard task of relating them to peroxiredoxin genes phenotypes, which underscores the pleiotropic physiological role of these enzymes and complex biologic impact of $H_2O_2$.

Discovery of Argyrin-Producing Archangium gephyra MEHO_001 and Identification of Its Argyrin Biosynthetic Genes

  • Choi, Juo;Park, Taejoon;Kang, Daun;Lee, Jeongju;Kim, Yungpil;Lee, Pilgoo;Chung, Gregory J.Y.;Cho, Kyungyun
    • Microbiology and Biotechnology Letters
    • /
    • v.49 no.4
    • /
    • pp.493-500
    • /
    • 2021
  • Argyrins are a group of anticancer and antibacterial octapeptide bioactive substances isolated from myxobacteria. In this study, we showed that the myxobacterium Archangium gephyra MEHO_001, isolated in Korea, produces argyrins A and B. MEHO_001 cells tend to aggregate when cultured in liquid media. Hence, a dispersion mutant, MEHO_002, was isolated from MEHO_001. The MEHO_002 strain produced approximately 3.5 times more argyrins than that produced by the wild-type strain MEHO_001. We determined the whole-genome sequence of A. gephyra MEHO_002 and identified a putative argyrin biosynthetic gene cluster comprising five genes, arg1-arg5, encoding non-ribosomal peptide synthases and tailoring enzymes. Inactivation of arg2 by plasmid insertion disrupted argyrin production. The amino acid sequences of the proteins encoded by arg2-arg5 of A. gephyra MEHO_002 were 90-98% similar to those encoded by the argyrin biosynthetic genes of Cystobacter sp. SBCb004, an argyrin-producing myxobacterium with identical domain organization.