New Players in the BRCA1-mediated DNA Damage Responsive Pathway

  • Kim, Hongtae (Department of Therapeutic Radiology, Yale University School of Medicine) ;
  • Chen Junjie (Department of Therapeutic Radiology, Yale University School of Medicine)
  • Received : 2008.04.14
  • Accepted : 2008.04.16
  • Published : 2008.06.30

Abstract

DNA damage checkpoint is an important self-defense mechanism for the maintenance of genome stability. Defects in DNA damage signaling and repair lead to various disorders and increase tumor incidence in humans. In the past 10 years, we have identified many components involved in the DNA damage-signaling pathway, including the product of breast cancer susceptibility gene 1 (BRCA1). Mutations in BRCA1 are associated with increased risk of breast and ovarian cancers, highlighting the importance of this DNA damage-signaling pathway in tumor suppression. While it becomes clear that BRCA1 plays a crucial role in the DNA damage responsive pathway, exactly how BRCA1 receives DNA damage signals and exerts its checkpoint function has not been fully addressed. A series of recent studies reported the discovery of many novel components involved in DNA damage-signaling pathway. These newly identified checkpoint proteins, including RNF8, RAP80 and CCDC98, work in concern in recruiting BRCA1 to DNA damage sites and thus regulate BRCA1 function in G2/M checkpoint control. This review will summarize these recent findings and provide an updated view of the regulation of BRCA1 in response to DNA damage.

Keywords

References

  1. Bekker-Jensen, S., Lukas, C., Melander, F., Bartek, J., and Lukas, J. (2005). Dynamic assembly and sustained retention of 53BP1 at the sites of DNA damage are controlled by Mdc1/NFBD1. J. Cell Biol. 170, 201-211 https://doi.org/10.1083/jcb.200503043
  2. Cantor, S.B., Bell, D.W., Ganesan, S., Kass, E.M., Drapkin, R., Grossman, S., Wahrer, D.C., Sgroi, D.C., Lane, W.S., Haber, D.A., et al. (2001). BACH1, a novel helicase-like protein, interacts directly with BRCA1 and contributes to its DNA repair function. Cell 105, 149-160 https://doi.org/10.1016/S0092-8674(01)00304-X
  3. Chen, A., Kleiman, F.E., Manley, J.L., Ouchi, T., and Pan, Z.Q. (2002). Autoubiquitination of the BRCA1*BARD1 RING ubiquitin ligase. J. Biol. Chem. 277, 22085-22092 https://doi.org/10.1074/jbc.M201252200
  4. Couch, F.J., DeShano, M.L., Blackwood, M.A., Calzone, K., Stopfer, J., Campeau, L., Ganguly, A., Rebbeck, T., and Weber, B.L. (1997). BRCA1 mutations in women attending clinics that evaluate the risk of breast cancer. N. Engl. J. Med. 336, 1409-1415 https://doi.org/10.1056/NEJM199705153362002
  5. Deng, C.X. (2002). Roles of BRCA1 in centrosome duplication. Oncogene 21, 6222-6227 https://doi.org/10.1038/sj.onc.1205713
  6. Deng, C.X., and Brodie, S.G. (2000). Roles of BRCA1 and its interacting proteins. Bioessays 22, 728-737 https://doi.org/10.1002/1521-1878(200008)22:8<728::AID-BIES6>3.0.CO;2-B
  7. Falck, J., Coates, J., and Jackson, S.P. (2005). Conserved modes of recruitment of ATM, ATR and DNA-PKcs to sites of DNA damage. Nature 434, 605-611 https://doi.org/10.1038/nature03442
  8. Ford, D., Easton, D.F., Stratton, M., Narod, S., Goldgar, D., Devilee, P., Bishop, D.T., Weber, B., Lenoir, G., Chang- Claude, J., et al. (1998). Genetic heterogeneity and penetrance analysis of the BRCA1 and BRCA2 genes in breast cancer families. The breast cancer linkage consortium. Am. J. Hum. Genet. 62, 676-689 https://doi.org/10.1086/301749
  9. Hahn, W.C., and Weinberg, R.A. (2002). Rules for making human tumor cells. N. Engl. J. Med. 347, 1593-1603 https://doi.org/10.1056/NEJMra021902
  10. Hashizume, R., Fukuda, M., Maeda, I., Nishikawa, H., Oyake, D., Yabuki, Y., Ogata, H., and Ohta, T. (2001). The RING heterodimer BRCA1-BARD1 is a ubiquitin ligase inactivated by a breast cancer-derived mutation. J. Biol. Chem. 276, 14537-14540 https://doi.org/10.1074/jbc.C000881200
  11. Huen, M.S., Grant, R., Manke, I., Minn, K., Yu, X., Yaffe, M.B., and Chen, J. (2007). RNF8 transduces the DNA-damage signal via histone ubiquitylation and checkpoint protein assembly. Cell 131, 901-914 https://doi.org/10.1016/j.cell.2007.09.041
  12. Ito, K., Adachi, S., Iwakami, R., Yasuda, H., Muto, Y., Seki, N., and Okano, Y. (2001). N-Terminally extended human ubiquitin- conjugating enzymes (E2s) mediate the ubiquitination of RING-finger proteins, ARA54 and RNF8. Eur. J. Biochem. 268, 2725-2732 https://doi.org/10.1046/j.1432-1327.2001.02169.x
  13. Kim, H., Chen, J., and Yu, X. (2007a). Ubiquitin-binding protein RAP80 mediates BRCA1-dependent DNA damage response. Science 316, 1202-1205 https://doi.org/10.1126/science.1139621
  14. Kim, H., Huang, J., and Chen, J. (2007b). CCDC98 is a BRCA1-BRCT domain-binding protein involved in the DNA damage response. Nat. Struct. Mol. Biol. 14, 710-715 https://doi.org/10.1038/nsmb1277
  15. Kolas, N.K., Chapman, J.R., Nakada, S., Ylanko, J., Chahwan, R., Sweeney, F.D., Panier, S., Mendez, M., Wildenhain, J., Thomson, T.M., et al. (2007). Orchestration of the DNAdamage response by the RNF8 ubiquitin ligase. Science 318, 1637-1640 https://doi.org/10.1126/science.1150034
  16. Liu, Z., Wu, J., and Yu, X. (2007). CCDC98 targets BRCA1 to DNA damage sites. Nat. Struct. Mol. Biol. 14, 716-720 https://doi.org/10.1038/nsmb1279
  17. Lou, Z., Minter-Dykhouse, K., Franco, S., Gostissa, M., Rivera, M.A., Celeste, A., Manis, J.P., van Deursen, J., Nussenzweig, A., Paull, T.T., et al. (2006). MDC1 maintains genomic stability by participating in the amplification of ATM-dependent DNA damage signals. Mol. Cell 21, 187-200 https://doi.org/10.1016/j.molcel.2005.11.025
  18. Mailand, N., Bekker-Jensen, S., Faustrup, H., Melander, F., Bartek, J., Lukas, C., and Lukas, J. (2007). RNF8 ubiquitylates histones at DNA double-strand breaks and promotes assembly of repair proteins. Cell 131, 887-900 https://doi.org/10.1016/j.cell.2007.09.040
  19. Manke, I.A., Lowery, D.M., Nguyen, A., and Yaffe, M.B. (2003). BRCT repeats as phosphopeptide-binding modules involved in protein targeting. Science 302, 636-639 https://doi.org/10.1126/science.1088877
  20. Rouse, J., and Jackson, S.P. (2002). Interfaces between the detection, signaling, and repair of DNA damage. Science 297, 547-551 https://doi.org/10.1126/science.1074740
  21. Scully, R., and Livingston, D.M. (2000). In search of the tumour-suppressor functions of BRCA1 and BRCA2. Nature 408, 429-432 https://doi.org/10.1038/35044000
  22. Sobhian, B., Shao, G., Lilli, D.R., Culhane, A.C., Moreau, L.A., Xia, B., Livingston, D.M., and Greenberg, R.A. (2007). RAP80 targets BRCA1 to specific ubiquitin structures at DNA damage sites. Science 316, 1198-1202 https://doi.org/10.1126/science.1139516
  23. Stucki, M., Clapperton, J.A., Mohammad, D., Yaffe, M.B., Smerdon, S.J., and Jackson, S.P. (2005). MDC1 directly binds phosphorylated histone H2AX to regulate cellular responses to DNA double-strand breaks. Cell 123, 1213-1226 https://doi.org/10.1016/j.cell.2005.09.038
  24. Su, T.T. (2006). Cellular responses to DNA damage: one signal, multiple choices. Annu. Rev. Genet. 40, 187-208 https://doi.org/10.1146/annurev.genet.40.110405.090428
  25. Takano, Y., Adachi, S., Okuno, M., Muto, Y., Yoshioka, T., Matsushima- Nishiwaki, R., Tsurumi, H., Ito, K., Friedman, S.L., Moriwaki, H., et al. (2004). The RING finger protein, RNF8, interacts with retinoid X receptor alpha and enhances its transcription-stimulating activity. J. Biol. Chem. 279, 18926-18934 https://doi.org/10.1074/jbc.M309148200
  26. Venkitaraman, A.R. (2002). Cancer susceptibility and the functions of BRCA1 and BRCA2. Cell 108, 171-182 https://doi.org/10.1016/S0092-8674(02)00615-3
  27. Wang, B., and Elledge, S.J. (2007). Ubc13/Rnf8 ubiquitin ligases control foci formation of the Rap80/Abraxas/Brca1/Brcc36 complex in response to DNA damage. Proc. Natl. Acad. Sci. USA 104, 20759-20763
  28. Wang, B., Matsuoka, S., Ballif, B.A., Zhang, D., Smogorzewska, A., Gygi, S.P., and Elledge, S.J. (2007). Abraxas and RAP80 form a BRCA1 protein complex required for the DNA damage response. Science 316, 1194-1198 https://doi.org/10.1126/science.1139476
  29. Yan, Z., Kim, Y.S., and Jetten, A.M. (2002). RAP80, a novel nuclear protein that interacts with the retinoid-related testisassociated receptor. J. Biol. Chem. 277, 32379-32388 https://doi.org/10.1074/jbc.M203475200
  30. Yu, X., and Chen, J. (2004). DNA damage-induced cell cycle checkpoint control requires CtIP, a phosphorylation-dependent binding partner of BRCA1 C-terminal domains. Mol. Cell Biol. 24, 9478-9486 https://doi.org/10.1128/MCB.24.21.9478-9486.2004
  31. Yu, X., Chini, C.C., He, M., Mer, G., and Chen, J. (2003). The BRCT domain is a phospho-protein binding domain. Science 302, 639-642 https://doi.org/10.1126/science.1088753
  32. Zhao, G.Y., Sonoda, E., Barber, L.J., Oka, H., Murakawa, Y., Yamada, K., Ikura, T., Wang, X., Kobayashi, M., Yamamoto, K., et al. (2007). A critical role for the ubiquitin-conjugating enzyme Ubc13 in initiating homologous recombination. Mol. Cell 25, 663-675 https://doi.org/10.1016/j.molcel.2007.01.029
  33. Zhou, B.B., and Elledge, S.J. (2000). The DNA damage response: putting checkpoints in perspective. Nature 408, 433-439 https://doi.org/10.1038/35044005