• Title/Summary/Keyword: gene conversion

Search Result 196, Processing Time 0.03 seconds

Tacrolimus Differentially Regulates the Proliferation of Conventional and Regulatory CD4+ T Cells

  • Kogina, Kazue;Shoda, Hirofumi;Yamaguchi, Yumi;Tsuno, Nelson H;Takahashi, Koki;Fujio, Keishi;Yamamoto, Kazuhiko
    • Molecules and Cells
    • /
    • v.28 no.2
    • /
    • pp.125-130
    • /
    • 2009
  • Tacrolimus is a widely used T cell targeted immunosuppressive drug, known as a calcineurin inhibitor. However, the exact pharmacological effects of tacrolimus on $CD4^+$ T cells have yet to be elucidated. This study investigated the effects of tacrolimus on $CD4^+$ T cell subsets. Mouse or human $CD4^+$ T cells were cultured with immobilized anti-CD3/CD28 antibodies in the presence of tacrolimus. The cell division of $CD4^+$ T cells was analyzed using a flow cytometer according to the expression of Foxp3. The gene expression patterns of tacrolimus-exposed T cells were examined by quantitative PCR. In the case of conventional $CD4^+$ T cells (Tconv cells), tacrolimus inhibited T cell receptor stimulation-induced cell division. In contrast, the cell division of regulatory $CD4^+$ T cells (Treg cells) was even promoted in the presence of tacrolimus, especially in humans. Tacrolimus did not promote conversion of Tconv to Treg cells in mice. Furthermore, tacrolimus modified the expression levels of Foxp3-regulated T cell receptor signal related-genes, PTPN22 and Itk, in human Treg cells. Immunosuppressive effect of tacrolimus may be attributed to the relatively enhanced proliferation of Treg cells in association with altered gene expression levels of TCR signaling molecules.

Conjugated linoleic acid producing potential of lactobacilli isolated from goat (AXB) rumen fluid samples

  • Tyagi, Amrish Kumar;Kumar, Sachin;Choudhury, Prasanta Kumar;Tyagi, Bhawna;Tyagi, Nitin
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.8
    • /
    • pp.1233-1241
    • /
    • 2020
  • Objective: The present investigation was aimed to explore the potential of lactobacilli for conjugated linoleic acid (CLA) production, isolated from rumen fluid samples of lactating goats. Methods: A total of 64 isolates of lactobacilli were obtained using deMan-Rogosa-Sharpe (MRS) agar from rumen fluid of goats and further subjected to morphological and biochemical characterizations. Isolates found as gram-positive, catalase negative rods were presumptively identified as Lactobacillus species and further confirmed by genus specific polymerase chain reaction (PCR). The phylogenetic tree was constructed from the nucleotide sequences using MEGA6. Results: Out of the 64 isolates, 23 isolates were observed positive for CLA production by linoleate isomerase gene-based amplification and quantitatively by UV-spectrophotometric assay for the conversion of linoleic acid to CLA as well as gas chromatography-based assay. In all Lactobacillus species cis9, trans11 isomer was observed as the most predominant CLA isomer. These positive isolates were identified by 16S rRNA gene-based PCR sequencing and identified to be different species of L. ingluviei (2), L.salivarius (2), L. curvatus (15), and L. sakei (4). Conclusion: The findings of the present study concluded that lactic acid bacteria isolated from ruminal fluid samples of goat have the potential to produce bioactive CLA and may be applied as a direct fed microbial to enhance the nutraceutical value of animal food products.

High Expression of β-Glucosidase in Bifidobacterium bifidum BGN4 and Application in Conversion of Isoflavone Glucosides During Fermentation of Soy Milk

  • You, Hyun Ju;Ahn, Hyung Jin;Kim, Jin Yong;Wu, Qian Qian;Ji, Geun Eog
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.4
    • /
    • pp.469-478
    • /
    • 2015
  • In spite of the reported probiotic effects, Bifidobacterium bifidum BGN4 (BGN4) showed no βglucosidase activity and failed to biotransform isoflavone glucosides into the more bioactive aglycones during soy milk fermentation. To develop an isoflavone-biotransforming BGN4, we constructed the recombinant B. bifidum BGN4 strain (B919G) by cloning the structural β-glucosidase gene from B. lactis AD011 (AD011) using the expression vector with the constitutively active promoter 919 from BGN4. As a result, B919G highly expressed β-glucosidase and showed higher β-glucosidase activity and heat stability than the source strain of the β-glucosidase gene, AD011. The biotransformation of daidzin and genistin compounds using the crude enzyme extract from B919G was completed within 4 h, and the bioconversion of daidzin and genistin in soy milk during fermentation with B919G also occurred within 6 h, which was much faster and higher than with AD011. The incorporation of this β-glucosidase-producing Bifidobacterium strain in soy milk could lead to the production of fermented soy milk with an elevated amount of bioavailable forms of isoflavones as well as to the indigenous probiotic effects of the Bifidobacterium strain.

Association between Prostaglandin-endoperoxide Synthase 2 (PTGS2) Polymorphisms and Blood Pressure in Korean Population

  • Jin, Hyun-Seok;Hong, Kyung-Won;Lim, Ji-Eun;Han, Hye-Ree;Lee, Jong-Young;Park, Hun-Kuk;Oh, Berm-Seok
    • Genomics & Informatics
    • /
    • v.6 no.3
    • /
    • pp.110-116
    • /
    • 2008
  • Blood pressure refers to the force exerted by circulating blood on the walls of blood vessels, and chronical elevation of blood pressure is known as hypertension. Although hypertension is affected by genetic and environmental factors, the genetic background of hypertension is not fully understood. One of the candidate genetic factors, Prostaglandin-endoperoxide synthase 2 (PTGS2), is a membrane-bound enzyme, catalyzing the conversion of arachidonic acid to prostaglandin, and recently SNPs of PTGS2 gene was associated with hypertension in Japanese population. Therefore the association of PTGS2 polymorphisms was investigated with blood pressure in healthy Korean subjects, 470 unrelated individuals randomly selected from Ansung and Ansan cohorts. The 25 SNPs of PTGS2 gene were identified by the sequencing analysis of 24 Korean samples. Among identified polymorphisms, three SNPs (rs689466, -1329A>G; rs5275, +6365T>C; rs4648308, +8806G> A) were selected for further association analysis, and rs689466 located in promoter region was associated with blood pressure as well as triglyceride level in the blood. By in silico analysis, rs689466 locates in v-Myb transcription factor binding site, and the v-Myb site disappears when the SNP is changed from A to G nucleotide. Individuals with A/G and G/G genotype in rs689466 have higher blood pressure than those with A/A genotype, and the regression p-value is 0.008 for systolic and 0.004 for diastolic blood pressure. In summary, the PTGS2 polymorphism (rs689466) is associated with blood pressure in Asian populations based on this and Japanese studies, shedding light on it as a genetic risk marker of hypertension.

Analysis of Anti-inflammatory Efficacy of Chrysanthemum coronarium PDRN (Polydeoxyribonucleotide) (쑥갓(Chrysanthemum coronarium L.) PDRN(Polydeoxyribonucleotide)의 항염증 효능 분석)

  • Song, Mi-Hee;Choi, Moon-Hyeok;Jeong, Jin-Hyoung;Lee, Sang-Sik;Jeong, Woo-Young
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.15 no.5
    • /
    • pp.396-404
    • /
    • 2022
  • Chrysanthemum coronarium L. contains various antioxidants such as beta-carotene, vitamins A and C, and polyphenols, and is known to have anti-inflammatory effects. Under the assumption that the PDRN contained in the extract can mediate the anti-inflammatory response, the mouse macrophages, RAW264.7 cells, were stimulated with LPS to induce the conversion to inflammatory cells, and then the addition of PDRN extracted from the extract was effective in inhibiting inflammation. It was analyzed whether there was The gene expression of IL-1β and TNF-α was used as an anti-inflammatory index, and the relative expression levels of each gene were confirmed by RT-PCR. As a result, RT-PCR confirmed the effect of PDRN-induced inhibition of inflammation in both IL-1β and TNF-α genes. Therefore, based on this study, it is considered to be a precedent data that can be developed as a treatment for inflammatory diseases, and it will be helpful in research and development of a treatment that can improve the anti-inflammatory mechanism.

Effect of Eicosapentaenoic Acid on Cellular Lipid Accumulation and Transcription Factors Involving Glucose Utilization (에이코사펜타에노익산에 의한 세포 내에서의 지방 축적 억제 효과 및 포도당 대사에 관여하는 전사인자의 변화)

  • Bu, So-Young
    • The Korean Journal of Food And Nutrition
    • /
    • v.24 no.4
    • /
    • pp.501-508
    • /
    • 2011
  • Previous studies suggest that polyunsaturated fatty acids with long carbon chains such as eicosapentaenoic acid(EPA) and docosahexaenoic acid(DHA) have several health benefits. However metabolic consequences of these fatty acids themselves and their regulation of transcriptional activity involving glucose utilization are not well established. Thus, the purpose of this study was to investigate how EPA influx affects cellular lipid accumulation and gene expressions involving $de$ $novo$ lipogenesis in hepatocyte cultures. Compared to oleic acid treatment, EPA treatment showed remarkably decreased cellular TG conversion and accumulation, along with phospholipids at a lower extent. As expected, EPA increased mRNA expression involving fatty acid influx and lipid droplet formation, but did not affect mRNA expression involving glucose utilization. EPA increased transcriptional activity of PPAR-${\alpha}$ and glucose responsive transcription factor when transcription factor binding protein was activated. Taken together, these data suggest that EPA decreases lipid accumulation through increases of the ${\beta}$-oxidation pathway without interruption of glucose utilization.

CRISPR/CAS9 as a Powerful Tool for Crop Improvement

  • Song, Jae-Young;Nino, Marjohn;Nogoy, Franz Marielle;Jung, Yu-Jin;Kang, Kwon-Kyoo;Cho, Yong-Gu
    • Journal of Plant Biotechnology
    • /
    • v.44 no.2
    • /
    • pp.107-114
    • /
    • 2017
  • Implementation of crop improvement programs relies on genetic diversity. To overcome the limited occurrence of natural mutations, researchers and breeders applied diverse methods, ranging from conventional crossing to classical bio-technologies. Earlier generations of knockout and gain-of-function technologies often result in incomplete gene disruption or random insertions of transgenes into plant genomes. The newly developed editing tool, CRISPR/Cas9 system, not only provides a powerful platform to efficiently modify target traits, but also broadens the scope and prospects of genome editing. Customized Cas9/guide RNA (gRNA) systems suitable for efficient genomic modification of mammalian cells or plants have been reported. Following successful demonstration of this technology in mammalian cells, CRISPR/Cas9 was successfully adapted in plants, and accumulating evidence of its feasibility has been reported in model plants and major crops. Recently, a modified version of CRISPR/Cas9 with added novel functions has been developed that enables programmable direct irreversible conversion of a target DNA base. In this review, we summarized the milestone applications of CRISPR/Cas9 in plants with a focus on major crops. We also present the implications of an improved version of this technology in the current plant breeding programs.

Effects of Feeding Betaine on Performance and Hormonal Secretion in Laying Hens

  • Park, Jae-Hong
    • Proceedings of the Korea Society of Poultry Science Conference
    • /
    • 2006.11a
    • /
    • pp.17-27
    • /
    • 2006
  • The effects of dietary betaine on performance, blood compositions, hepatic amino acid concentrations and hormonal secretions were examined in laying hens. Egg production was significantly higher in birds fed the 16.5 % protein diet compared to those fed 14.5 % protein diet(p<0.05), whereas dietary supplementation of betaine did not show any significant effect. The high level of protein and betaine supplementation significantly improved egg weight, egg mass and feed conversion(p<0.05), while eggshell breaking strength, eggshell thickness and Haugh unit were not influenced by betaine and dietary protein levels. Supplemental betaine did not affect serum total protein, albumin and BUN concentration. However, uric acid concentration significantly increased in 600 ppm betaine-fed groups(p<0.05). Concentrations of most hepatic amino acid were influenced by increased protein feeding and dietary betaine supplementation. Hormone studies recorded significantly higher serum and hepatocyte IGF-I concentration in 600 and 1,200 ppm betaine treatments(p<0.05) compared to those of control group. IGF-I mRNA gene expression of hepatocytes revealed statistically correlated increase in 600 and 1,200 ppm betaine-fed groups compared to the controls(p<0.05). Serum IGFBP-3 concentration was significantly elevated in 600 ppm betaine treatments. However, the secretion of IGFBP-1 in hepatocyte of laying hens fed with 600 and 1,200 ppm of betaine showed a significant decrease compared to the control group(p<0.05). Results of these study show that dietary betaine supplementation affects protein and hormone metabolism in laying hens.

  • PDF

Effect of Dietary Conjugated Linoleic Acid on Plasma Levels of Glucose and Lipids and Hepatic Lipogenic Enzyme Activity in Otsuka Long Evans Tokushima Fatty Rats (OLETF 비만쥐에서 CLA첨가 식이가 혈장의 포도당과 지질농도 및 간조직의 Lipogenic Enzyme 활성도에 미치는 영향)

  • 박현서;고은경;김영설
    • Journal of Nutrition and Health
    • /
    • v.34 no.8
    • /
    • pp.850-857
    • /
    • 2001
  • The study was designed to observe whether the conjugated linoleic acid supplemented to diet could reduce plasma levels of glucose and lipids which were increased in 27-weeks old Otsuka Long Evans Tokushima Fatty(OLETF) rats. Twenty male OLETF rats of 7 weeks old were fed an experimental diet containing 4.5%(w/w) total fat including 1% CLA and six of twenty rats were sacrified at 6 weeks feeding. The rest of OLETF rats was divided into 2 groups, one group was continuously fed for 14 weeks more the same experimental diet containing 1% CLA and the other group was fed control diet which eliminated CLA. CLA did not significantly reduce food intake and body weight gain in OLETF obese rats. Plasma triglyceride and total cholesterol level were significantly increased at older age of OLETF obese rats, but CLA could significantly reduce plasma cholesterol and triglyceride increased in obese rats. However, CLA was not strong enough to reduce the increased plasma glucose level and hepatic lipogenic enzyme acitivies. CLA was mostly deposited in epididymal fat pad and could be incorporated into hepatic microsomal membrane and did interfere the conversion of C18 : 0 into C18 : 1 in liver. In conclusion, CLA could have anti-atherogenic effect by reducing plasma cholesterol and triglyceride which was increased in genetically obese rats, but CLA(1%) was not good source of dietary fatty acid to reduce body fatness and plasma glucose which was increased by obese gene in older rats.

  • PDF

Characterization of Bacillus stearothermophilue Cyclodextrin Glucanotransferase that Expressed by Saccharomyces cerevisiae (Saccharomyces cerevisiae에서 발현된 Bacillus stearothermophilus Cyclodextrin Glucanotransferase의 특성)

  • 박현이;전숭종;권현주;남수완;김한우;김광현;김병우
    • Microbiology and Biotechnology Letters
    • /
    • v.30 no.4
    • /
    • pp.293-297
    • /
    • 2002
  • The cyclodextrin glucanotransferase (CGTase) gene from Bacillus stearothermophilus NO2 was expressed in Saccharomyces cerevisiae 2805 under the adhl promoter. The CGTase was purified from S. cerevisiae 2805/pVT-CGTS. The purified enzyme exhibited a optima of activity around pH 7.0 and $65^{\circ}C$. Thermal stability of the enzyme was increased fairly as compared with the CGTase of B. stearothermophilus NO2. The conversion yield of cyclodextrin (CD) and the production ratio of $\alpha$-, $\beta$,-, ${\gamma}$-CD from starch were showed similarly aspect to the CGTase of B. stearothermophilus NO2.