• Title/Summary/Keyword: gel materials

Search Result 1,727, Processing Time 0.033 seconds

Fabrication of Single Layer Anti-reflection Thin Film by Sol-gel Method (Sol-gel법에 의한 단층 반사 방지막 제조)

  • Park, Jong-Guk;Jeon, Dae-Woo;Lee, Mi-Jai;Lim, Tea-Young;Hwang, Jonghee;Bae, Dong-Sik;Kim, Jin-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.12
    • /
    • pp.821-825
    • /
    • 2015
  • Anti-reflective (AR) thin film was fabricated on a glass substrate by sol-gel method. The coating solution was synthesized with TEOS (tetraethlyorthosilicate) and poly ethylene glycol (PEG, 4.0 wt%). As the withdrawal speed of coating was changed from 0.1 mm/sec to 0.3 mm/sec, the thickness and refractive index of prepared thin films were changed. The reflectance and transmittance of coating glass fabricated by the withdrawal speed of 0.1 mm/sec were 0.62% and 95.0% in visible light range. The refractive index and thickness of single layer thin film were n= 1.29 and ca. 99.0 nm.

Effects of Electrolyte Concentration on Electrochemical Properties of Zinc-Air Batteries (전해질 농도에 따른 아연-공기 전지의 전기화학적 특성)

  • Han, Ji Woo;Jo, Yong Nam
    • Korean Journal of Materials Research
    • /
    • v.29 no.12
    • /
    • pp.798-803
    • /
    • 2019
  • The self-discharge behavior of zinc-air batteries is a critical issue induced by corrosion and hydrogen evolution reaction (HER) of zinc anode. The corrosion reaction and HER can be controlled by a gelling agent and concentration of potassium hydroxide (KOH) solution. Various concentrations of KOH solution and polyacrylic acid have been used for gel electrolyte. The electrolyte solution is prepared with different concentrations of KOH (6 M, 7 M, 8 M, 9 M). Among studied materials, the cell assembled with 6 M KOH gel electrolyte exhibits the highest specific discharge capacity and poor capacity retention. Whereas, 9 M KOH gel electrolyte shows high capacity retention. However, a large amount of hydrogen gas is evolved with 9 M KOH solution. In general, the increase in concentration is related to ionic conductivity. At concentrations above 7 M, the viscosity increases and the conductivity decreases. As a result, compared to other studied materials, 7 M KOH gel electrolyte is suitable for Zn-air batteries because of its higher capacity retention (92.00 %) and specific discharge capacity (351.80 mAh/g) after 6 hr storage.

The Synthesis of Silica Aerogel in the Macroporous Ceramic Structure by Sono-gel Process and Supercritical Drying Process (초음파 겔화 공정과 초임계 건조 공정을 이용한 다공성 세라믹스 구조체 내부에 실리카 에어로겔 합성)

  • Hong, Sun-Wook;Song, In-Hyuck;Park, Young-Jo;Yun, Hui-Suk;Hwang, Ki-Young;Rhee, Young-Woo
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.6
    • /
    • pp.553-559
    • /
    • 2010
  • The synthesis behavior of nanoporous silica aerogel in the macroporous ceramic structure was observed using TEOS as a source material and glycerol as a DCCA(dry control chemical additive). Silica aerogel in the macroporous ceramic structure were synthesized through a sono-gel process. The wet gel in the macroporous ceramic structure were aged in ethanol for 72 h at $50^{\circ}C$. The aged wet gel was dried under supercritical drying condition. The addition of glycerol has a role of giving the uniform pore size distribution. The reproducibility of aerogel in the macroporous ceramic was improved in the glycerol(0.05 mol%) added to the silica sol and TEOS : $H_2O$=1 : 12.

Change of Luminescent Properties of Phosphors Through pH and Rw Control in Sol-gel Reaction (졸-겔반응에서 pH 및 Rw제어를 통한 Sr3-xMgSi2O8:EUx (0.01≤x≥0.1) 형광체의 발광특성 변화)

  • Ahn Joong-In;Han Cheong-Hwa;Kim Chang-Hae
    • Korean Journal of Materials Research
    • /
    • v.15 no.6
    • /
    • pp.419-425
    • /
    • 2005
  • In this paper, we describe the luminescent properties of the phosphors synthesized via sol-gel technique. When the phosphor prepared by sol-gel technique, reaction factors, such as pH condition, $R_w$ and drying temperature affected the luminescent intensity, particle size and morphology of final product. Therefore, we attempt to control these reaction factors in order to improve the luminescent efficiency of phosphors. As a result of our study, when the acid catalyst (HCl) was used, emission intensity was higher than the case of base catalyst $(NH_4OH)$. The product prepared at $R_w=60$ indicated the maximum intensity. As the increase of the $R_w$ value, the particle was agglomerated and emission intensity was decreased. Finally, optimum drying temperature of gel was found to be$ 180^{\circ}C$.

Properties of Sol-gel Coating Materials Synthesized from Colloidal Silicas and Methyltrimethoxysilane (Colloidal Silica와 Methyltrimethoxysilane간의 졸겔반응으로 합성된 코팅제 특성 연구)

  • 강동필;박효열;안명상;이태희;명인혜;강귀태
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.9
    • /
    • pp.967-972
    • /
    • 2004
  • Hardness and surface property of coated gel materials are considerably different according to kinds(particle size/stabilized ion) of colloidal silica(CS), kinds of silanes, content ratio of silane versus CS, and reaction degree in sol solution. We report the properties of sol-gel coating materials in which the factors of reaction are kinds of CS, contents ratio of CS and MTMS, and reaction time of sol. The contact angles of the coated films obtained from the mixed CS system showed a little good relationship with MTMS content increase to those from HSA CS reaction system and the change of contact angle didn't have much effect on reaction time of sol. In the coating films obtained from HSA CS reaction system, the surface was much rough in case of that the content MTMS decreased and the reaction of sol kept long. The surface roughness of films obtained from the mixed CS reaction system showed similar tendency, though its degree was a little different. In synthesis of sol-gel coating materials, we could identify that choice of CS kinds and content ratio of CS and silane were important and it was desirable the reaction time of sol is not long.

Encapsulation of $\beta$-cyclodextrin including DHA using Curdlan (커들란을 이용만 $\beta$-cyclodextrin에 포접된 DHA의 캡슐화)

  • 이기영;이창문;최창남;김동운;이인영
    • KSBB Journal
    • /
    • v.17 no.1
    • /
    • pp.54-58
    • /
    • 2002
  • Curdlan gel containing various hydrophobic materials was prepared. The homogenized suspension of curdlan and hydrophobic materials was healed at $100^{\circ}C$. The curdlan gel can contain hydrophobic material up to 27%(v/v). When gel was compressed, only water in the gel was removed. When immersed in water, the dried gel absorbed water and became the original wet gel. The syneresis of gel decreased with the concentration of hydrophobic material added. DHA content of dried gel was about 90%. $\beta$-cyclodextrin inclusion complexes containing DHA were prepared with addition of water and ethanol. X-ray diffractograms of complexes showed a specific peak at 7-$8^{\circ}C$ and FT-IR spectrum of complex showed a specific C=O peak at $1745\textrm{cm}^{-1}$. Inclusion complex containing DHA was microcapsulated with curdlan and pullulan.

Effect of Demineralized Bone Particle Gel Penetrated into Poly(lactic-co-glycolic acid) Scaffold on the Regeneration of Chondrocyte: In Vivo Experiment (PLGA 다공성 지지체에 함침시킨 DBP젤의 연골재생 효과: In Vivo 실험)

  • Lee, Yun Mi;Shim, Cho Rok;Lee, Yujung;Kim, Ha Neul;Jo, Sun A;Song, Jeong Eun;Lee, Dongwon;Khang, Gilson
    • Polymer(Korea)
    • /
    • v.36 no.6
    • /
    • pp.789-794
    • /
    • 2012
  • Poly(lactic-co-glycolic acid) (PLGA) has been most widely used due to its advantages such as good biodegradability, controllable rate of degradation and metabolizable degradation products. We manufactured composite scaffolds of PLGA scaffold penetrated DBP gel (PLGA/DBP gel) by a simple method, solvent casting/salt leaching prep of PLGA scaffolds and subsequent soaking in DBP gel. Chondrocytes were seeded on the PLGA/DBP gel. The mechanical strength of scaffold, histology (H&E, Safranin-O, Alcian-blue) and immunohistochemistry (collagen type I, collagen type II) were performed to elucidate in vitro and in vivo cartilage-specific extracellular matrices. It was better to keep the characteristic of chondrocytes in the PLGA/DBP gel scaffolds than that PLGA scaffolds. This study suggests that PLGA/DBP gel scaffold may serve as a potential cell delivery vehicle and a structural basis for in vivo tissue engineered cartilage.

Multi-scale simulation of drying process for porous materials using molecular dynamics (part 1 : homogenization method) (분자동역학을 이용한 다공성 물질 건조공정 멀티스케일 시뮬레이션(1부 : 균질화법 해석))

  • 오진원;백성민;금영탁
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.14 no.3
    • /
    • pp.115-122
    • /
    • 2004
  • When porous materials are dried, the particles flocculate into fish-net structure in gel phase. In order to exactly analyze the stress distribution of porous materials during drying process, the elastic tensor of microscopic gel structures has to be predicted considering pore shapes as well as porosities of porous materials. The elastic characteristics of porous materials associated with porosities were predicted analyzing microscopic gel structures with circular and cross pores via homogenization method and the drying processes of the electric porous ceramic insulator were simulated using finite element method (FEM). Comparing analysis results between consideration and negligence of pores, the deformed shape and distributions of temperature and moisture were similar but the residual stress was significantly different.