DOI QR코드

DOI QR Code

Effect of Demineralized Bone Particle Gel Penetrated into Poly(lactic-co-glycolic acid) Scaffold on the Regeneration of Chondrocyte: In Vivo Experiment

PLGA 다공성 지지체에 함침시킨 DBP젤의 연골재생 효과: In Vivo 실험

  • Lee, Yun Mi (Dept. of Advanced Organic Materials Engineering, Dept. of BIN Funion Tech., and Dept. of Polymer Nano Sci. & Tech., Chonbuk National University) ;
  • Shim, Cho Rok (Dept. of Advanced Organic Materials Engineering, Dept. of BIN Funion Tech., and Dept. of Polymer Nano Sci. & Tech., Chonbuk National University) ;
  • Lee, Yujung (Dept. of Advanced Organic Materials Engineering, Dept. of BIN Funion Tech., and Dept. of Polymer Nano Sci. & Tech., Chonbuk National University) ;
  • Kim, Ha Neul (Dept. of Advanced Organic Materials Engineering, Dept. of BIN Funion Tech., and Dept. of Polymer Nano Sci. & Tech., Chonbuk National University) ;
  • Jo, Sun A (Dept. of Advanced Organic Materials Engineering, Dept. of BIN Funion Tech., and Dept. of Polymer Nano Sci. & Tech., Chonbuk National University) ;
  • Song, Jeong Eun (Dept. of Advanced Organic Materials Engineering, Dept. of BIN Funion Tech., and Dept. of Polymer Nano Sci. & Tech., Chonbuk National University) ;
  • Lee, Dongwon (Dept. of Advanced Organic Materials Engineering, Dept. of BIN Funion Tech., and Dept. of Polymer Nano Sci. & Tech., Chonbuk National University) ;
  • Khang, Gilson (Dept. of Advanced Organic Materials Engineering, Dept. of BIN Funion Tech., and Dept. of Polymer Nano Sci. & Tech., Chonbuk National University)
  • 이윤미 (전북대학교 유기신물질학과, BIN 융합공학과, 고분자나노공학과) ;
  • 심초록 (전북대학교 유기신물질학과, BIN 융합공학과, 고분자나노공학과) ;
  • 이유정 (전북대학교 유기신물질학과, BIN 융합공학과, 고분자나노공학과) ;
  • 김하늘 (전북대학교 유기신물질학과, BIN 융합공학과, 고분자나노공학과) ;
  • 조선아 (전북대학교 유기신물질학과, BIN 융합공학과, 고분자나노공학과) ;
  • 송정은 (전북대학교 유기신물질학과, BIN 융합공학과, 고분자나노공학과) ;
  • 이동원 (전북대학교 유기신물질학과, BIN 융합공학과, 고분자나노공학과) ;
  • 강길선 (전북대학교 유기신물질학과, BIN 융합공학과, 고분자나노공학과)
  • Received : 2012.06.27
  • Accepted : 2012.08.29
  • Published : 2012.11.25

Abstract

Poly(lactic-co-glycolic acid) (PLGA) has been most widely used due to its advantages such as good biodegradability, controllable rate of degradation and metabolizable degradation products. We manufactured composite scaffolds of PLGA scaffold penetrated DBP gel (PLGA/DBP gel) by a simple method, solvent casting/salt leaching prep of PLGA scaffolds and subsequent soaking in DBP gel. Chondrocytes were seeded on the PLGA/DBP gel. The mechanical strength of scaffold, histology (H&E, Safranin-O, Alcian-blue) and immunohistochemistry (collagen type I, collagen type II) were performed to elucidate in vitro and in vivo cartilage-specific extracellular matrices. It was better to keep the characteristic of chondrocytes in the PLGA/DBP gel scaffolds than that PLGA scaffolds. This study suggests that PLGA/DBP gel scaffold may serve as a potential cell delivery vehicle and a structural basis for in vivo tissue engineered cartilage.

생체적합성 및 생분해성의 장점을 지닌 PLGA는 우수한 기계적 성질과 분해속도를 조절할 수 있는 장점을 가지고 있지만 소수성으로 인해 세포의 초기부착률이 낮고, 지지체 내부에 영양액의 공급이 원활하지 않다. 본 연구에서는 이러한 단점을 보완하고자 탈미네랄화된 골분(DBP, demineralized bone particle) 젤을 PLGA 지지체에 함침시켰다. 다양한 형태의 지지체 압축강도를 측정한 결과 PLGA/DBP 지지체가 연골과 비슷한 강도를 가지고 있었으며, 이를 바탕으로 DBP젤을 함침시킨 PLGA/DBP젤 지지체를 제작하였다. 연골세포를 파종하여 in vivo 실험을 진행하였고 조직화 정도를 확인하기 위해 H&E, Safranin-O, Alcian blue, Collagen type I 및 Collagen type II 염색을 실시하였다. 그 결과 DBP를 함침시킨 PLGA 지지체에서 GAG, Collagen type I 및 Collagen type II의 높은 발현과 조직화를 보여 연골조직으로 대체할 수 있는 가능성을 확인하였다.

Keywords

References

  1. J. K. Mouw, N. D. Casw, R. E. Guldberg, A. H. K. Plaas, and M. E. Levenston, Osteoarthr. Cartil., 13, 828 (2005). https://doi.org/10.1016/j.joca.2005.04.020
  2. C. Song, J. M. Kim, B. Y. Sung, Y. B. Kong, and K. H. Ra, J. Korean Orthop. Assoc., 44, 210 (2009). https://doi.org/10.4055/jkoa.2009.44.2.210
  3. S. Munirah, S. H. Kim, B. H. I. Ruszymah, and G. Khang, Eur. Cell. Mater., 15, 41 (2008). https://doi.org/10.22203/eCM.v015a04
  4. J. W. Jang, C. W. Han, M. S. Kim, S. H. Cho, H. B. Lee, and G. Khang, Polymer(Korea), 28, 382 (2004).
  5. S. J. Yoon, S. H. Kim, H. J. Ha, Y. K. Ko, J. W. So, M. S. Kim, Y. I. Yang, G. Khang, J. M. Rhee, and H. B. Lee, Tissue Eng. Part A, 14, 539 (2008). https://doi.org/10.1089/tea.2007.0129
  6. W. Xia, W. Liu, L. Cui, Y. Liu, W. Zhong, D. Liu, J. Wu, K. Chua, and Y. Cao, J. Biomater. Res. B, 71B, 373 (2004). https://doi.org/10.1002/jbm.b.30087
  7. W. Linbo and D. Jiandong, Biomaterials, 25, 5821 (2004). https://doi.org/10.1016/j.biomaterials.2004.01.038
  8. D. Rossella, C. Claudia, G. Ida, M. Tiziana, and C. Bice, Polym. Degrad. Stab., 95, 694 (2010). https://doi.org/10.1016/j.polymdegradstab.2009.11.039
  9. Y. Kang, Y. S. Song, Y. E. Kim, S. C. Oh, J. E. Song, D. Lee, and G. Khang, Inter. J. Tissue Regen., 3, 21 (2012).
  10. A. Atala, J. Endourol., 14, 49 (2008).
  11. W. B. Tsai, C. H. Chen, J. F. Chen, and K. Y. Chang, J. Mater. Sci. Med., 17, 337 (2006). https://doi.org/10.1007/s10856-006-8234-x
  12. O. J. Lee, J. M. Lee, H. J. Jin, and C. H. Park, Inter. J. Tissue Regen., 1, 68 (2010).
  13. T. Yoshioka, N. Kawazoe, T. Tateishi, and G. Chen, Biomaterials, 29, 3438 (2008). https://doi.org/10.1016/j.biomaterials.2008.04.011
  14. M. R. Urist, Science, 150, 893 (1965). https://doi.org/10.1126/science.150.3698.893
  15. C. B. Huggins and M. R. Urist, Science, 167, 896 (1970). https://doi.org/10.1126/science.167.3919.896
  16. S. H. Kim, K. S. Park, B. S. Choi, H. J. Ha, J. M. Rhee, M. S. Kim, Y. S. Yang, H. B. Lee, and G. Khang, Adv. Exp. Med. Biol., 585, 167 (2006).
  17. Y. M. Lee, C. R. Shim, Y. J. Lee, J. E. Song, J. W. Bea, Y. L. Kim, D. Lee, and G. Khang, Inter. J. Tissue Regen., 3, 13 (2012).
  18. H. N. Park, J. B. Lee, and I. K. Kwon, Inter. J. Tissue Regen., 1, 10 (2010).
  19. W. Y. Ahn, H. L. Kim, J. E. Song, D. Lee, and G. Khang, Polymer(Korea), 35, 499 (2011).
  20. J. H. Lee, S. J. Park, H. J. Chun, and C. H. Kim, Inter. J. Tissue Regen., 1, 1 (2010).
  21. S. K. Lee, H. K. Hong, S. J. Kim, Y. K. Kim, Y. S. Song, Y. Ha, D. Lee, and G. Khang, Polymer(Korea), 34, 398 (2010).
  22. H. Lu, T. Hoshiba, N. Kawazoe, and G. Chen, Biomaterials, 32, 2489 (2011). https://doi.org/10.1016/j.biomaterials.2010.12.016
  23. F. A. Maspero, K. Ruffieux, B. Muller, and E. Wintermantel, J. Biomed. Mater. Res., 26, 89 (2002).
  24. B. Bolland, J. M. Kanczler, P. J. Ginty, S. M. Howdle, K. M. Shakesheff, D. G. Dunlop, and R. Coreffo, Biomaterials, 29, 3221 (2008). https://doi.org/10.1016/j.biomaterials.2008.04.017
  25. W. L. Murphy, M. C. Peters, D. H. Kohn, and D. J. Mooney, Biomaterials, 21, 2251 (2000).
  26. L. A. Solchaga, J. S. Temenoff, J. Gao, A. G. Mikos, A. I. Caplan, and V. M. Goldberg, Osteoarthr. Cartil., 13, 297 (2005). https://doi.org/10.1016/j.joca.2004.12.016
  27. T. H. Kim, J. H. Ko, S. J. Kim, and Y. H. Park, Inter. J. Tissue Regen., 2, 1 (2011).
  28. B. M. C. Gutierrez, Z. Y. G. Carvajal, M. Jobbagy, F. Rubio, L. Yuste, F. Rojo, M. L. Ferrer, and F. Monte, Adv. Funct. Mater., 17, 3505 (2007). https://doi.org/10.1002/adfm.200700093
  29. S. Mizuno, C. Lycette, C. Quinto, and J. Glowacki, Mater. Res. Soc. Symp. Proc., 252, 133 (1992).

Cited by

  1. Biofabrication vol.31, pp.3, 2016, https://doi.org/10.1097/BTO.0000000000000184
  2. State of Art on Solvent Casting Particulate Leaching Method for Orthopedic ScaffoldsFabrication vol.4, pp.2, 2012, https://doi.org/10.1016/j.matpr.2017.01.101